扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
在本页阅读全文(共3页)
以下是文章的翻译稿,供大家参考:
天又一次塌下来了。这一次是“大数据”让IT部门如临大敌。但是就像“世界末日”和“外星人”一样,“大数据”是虚构的,是一个“大谎言”。
正如街谈巷议的传闻一样,不管你走到哪里,关于“大数据”的讨论无处不在。在Google搜索这个词组,搜索结果超过13亿条。它甚至在维基百科拥 有专门的条目。数据泛滥导致很多人得出结论:企业将不堪重负。这并不是说企业内部的信息量不会增长。相反地,企业内部信息量也难逃增长的命运。因为,大数 据一直是个难题。
尽管不断有人声称,数据洪流将导致厄运来临,但IT行业却始终能够通过改进计算基础架构,使它们速度更快、容量更大、价格更便宜、体积更小巧,从而让挥之不去的信息“大决战”预言不攻自破。
今天,通过使用列式数据库分析架构,组织机构可以不必过度对“大数据”带来的焦虑,相反,还能够让“大数据”更好为企业运营服务。在列式数据库中, 用户可以随时调用和分析大数据集,即使对诸如非结构化数据等各种数据类型的大数据集亦是如此。它们不仅随时可用,而且执行速度更快,还能根据工作要求,更 方便地扩展,从而为尽可能多的用户服务,涵盖尽可能多的数据。
这种做法其实就是挖掘组织机构内外部的“大数据”,并提取有价值的部分供企业使用。它的目的是让组织机构更灵活、更具竞争力,提高组织机构的盈利能力。
对于部署一个分析数据仓库而言,最重要的步骤之一就是找到质量合格的数据。从数据净化到采用数据管理总策略——用于确保数据质量的技术已经成熟。获取最优质数据时还要对其进行内部审核。
数据延迟:需考虑组织内部数据延迟的三个方面:数据发生时机、事件延续时间、决策所需时间。
数据关联:与商业用户合作确定数据的前后关系,并就使用中的多个数据集建立相互联系,同时还需要考虑数据增长率以及重复的来源。
自服务:确定高级用户如何在不影响IT或其他资源的情况下,对用于查询的数据实施控制。
首席数据官(Chief Data Officer):指定一名高级职员担任首席数据官的职务,使其能够在维持组织治理的同时保证数据的可操作性。
数据质量的重要性再怎么强调也不为过。以comScore为例,作为一家为电子商务市场提供分析服务和解决方案的云计算公司,该公司从创立伊始就意识到,网络营销的重点正从访客数量转变为盈利性。comScore的“客户知识平台”(Customer Knowledge Platform)针对顾客浏览互联网的行为与偏好提供了全方位的观察视角。该服务追踪所有愿意提供互联网行为以供分析的用户,记录他们在各个网站的冲浪以及购买行为。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。