扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
GFS(google file system)与过去的分布式文件系统有很多相同的目标,但GFS的设计受到了当前及预期的应用方面的工作量及技术环境的驱动,这反映了它与早期的文件系统明显不同的设想。需要对传统的选择进行重新检验并进行完全不同的设计观点的探索。
GFS与以往的文件系统需要共同关注的:
性能、可扩展性、可靠性、可用性
GFS与以往的文件系统的不同的观点如下:
1、组件错误不再被当作异常,而是将其作为常见的情况加以处理。因为文件系统由成百上千个用于存储的机器构成,而这些机器是由廉价的普通部件组成并被大量的客户机访问。部件的数量和质量使得一些机器随时都有可能无法工作并且有一部分还可能无法恢复。所以实时地监控、错误检测、容错、自动恢复对系统来说必不可少。
2、按照传统的标准,文件都非常大。长度达几个GB的文件是很平常的。每个文件通常包含很多应用对象。当经常要处理快速增长的、包含数以万计对象的数据集时,即使底层文件系统提供支持,我们也很难管理成千上万的KB规模的文件块。因此在设计中,操作的参数、块的大小必须要重新考虑。对大型的文件的管理一定要能做到高效,对小型的文件也必须支持,但不必优化。
3、大部分文件的更新是通过添加新数据完成的,而不是改变已存在的数据。在一个文件中随机的操作在实践中几乎不存在。一旦写完,文件就只可读,很多数据都有这些特性。一些数据可能组成一个大仓库以供数据分析程序扫描。有些是运行中的程序连续产生的数据流。有些是档案性质的数据,有些是在某个机器上产生、在另外一个机器上处理的中间数据。由于这些对大型文件的访问方式,添加操作成为性能优化和原子性保证的焦点。而在客户机中缓存数据块则失去了吸引力。
4、工作量主要由两种读操作构成:对大量数据的流方式的读操作和对少量数据的随机方式的读操作。在前一种读操作中,可能要读几百KB,通常达 1MB和更多。来自同一个客户的连续操作通常会读文件的一个连续的区域。随机的读操作通常在一个随机的偏移处读几个KB。性能敏感的应用程序通常将对少量数据的读操作进行分类并进行批处理以使得读操作稳定地向前推进,而不要让它来来回回的读。
5、工作量还包含许多对大量数据进行的、连续的、向文件添加数据的写操作。所写的数据的规模和读相似。一旦写完,文件很少改动。在随机位置对少量数据的写操作也支持,但不必非常高效。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者