科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网存储频道磁性随机存取内存(MRAM)技术结构剖析

磁性随机存取内存(MRAM)技术结构剖析

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

在新一代内存技术开发竞赛中,飞思卡尔半导体(Freescale,原摩托罗拉半导体分部,后分拆独立)已实现了磁性随机存取内存(MRAM)的商业化。该公司在今年中发布了8年来的研究成果:4MB MR2A16A组件;其MRAM内存技术使用磁矩来保存位状态,符合商业应用需求。由于...

作者:飞思卡尔半导体公司 Tom Lee 2006年10月31日

关键字:

  • 评论
  • 分享微博
  • 分享邮件

在本页阅读全文(共4页)

MRAM位单元作业

MR2A16A拥有包含一个晶体管和一个磁穿隧结(1T1MTJ)的交替(Toggle)位单元。磁穿隧结(MTJ)处于MRAM位单元的核心,它由位于两个磁层之间的一个薄氧化铝(AlOx)介电层组成,每个磁层都拥有一个相关的磁极。顶部磁层称为自由层,因为它可以自由转换极性;底部磁层称为固定层,因为它的极性是固定的,不能更改。

自由层的极性决定了位的状态是‘0’还是‘1’。当自由层的极性和固定层的极性相同时(指向同一方向),通过MTJ Stack的阻力就很小(参见下图a)。

MTJ极性相同-阻力小

当自由层的极性和固定层的极性相反时(指向相反的方向),通过MTI堆栈的阻力就非常大(参见上图b)。

正是通过MTJ Stack的阻力大小决定了位单元的读数是‘0’还是‘1’。

在编程作业中,自由层的极性可以切换到两个方向中的任何一个。极性通过MTJ顶部和底部垂直方向的铜互连层进行设置。垂直互连的电流产生一个磁场,该磁场可将自由层的极性方向切换为相反方向。

1T1MTJ 位单元

要成为一种可靠的内存,MRAM商品化的主要障碍是其位干扰率很高。在对目标位进行编程时,非目标位中的自由层可以随意编程。透过建构交替位单元,飞思卡尔研究人员已经克服了这一问题。当位的状态切换时,交替 位单元就在相同方向上旋转磁矩。写入线1和写入线2上的不稳定电流脉冲就会旋转极性,而不会干扰目标位同一行或同一列上的位。

为进一步让非目标位免受干扰,飞思卡尔在铜缆的三侧使用一个涂敷层将铜互连层包围起来。该涂敷层可以引导和集中指向目标位单元的磁场强度。如此就能使用更低的电流,将相邻位与磁场隔离(在正常情况下磁场会诱发干扰),因而对目标位进行编程。

在量产MRAM组件前,还面临由极薄的AlOx(氧化铝)穿隧隔离层所导致的问题。AlOx中的厚度变化会导致位单元阻力产生很大差异。飞思卡尔已经解决了AlOx厚度变化问题,在整个内存数组、整个晶圆表面和所有量产产品中,穿隧隔离层都是相同的。

飞思卡尔还添加了两个额外的层,因而改变了固定磁层方法。固定层下方为Ruthenium (Ru,钌)层,在钌层下方则是另外一个称为钉扎层的磁层。固定层和钉扎层的极性相反,因而产生很强的耦合效应。这种耦合使固定层的极性保持固定。这样,在编程作业过程中,它就不会因为突然施加磁场而发生意外翻转(图7)。

钉扎层

    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章