
医院的HIS、LIS、CIS,PACS等主要应用系统的可靠性、可用性要求非常高,包含了整个医院里的从挂号管理到门诊等等重要业务。从HIS系统来看,是在线要求持续运行的高可用系统,其系统的安全稳定运行,数据的安全快速恢复至关重要,影响着整个医院的业务正常运转。数据和应用的可靠性与安全性以及不间断、快速恢复已经成为非常关键的因素。即如何提高"在线数据的高可用性"和"在线应用的高可用性",成为医院HIS系统首要解决的问题!数据可以说是每个系统的血脉,支撑着整个系统的正常运行。
眉山中医院自建立以来,医院始终坚持信息化建设,经过多年的发展,已经拥有完善的IT基础设施及一批专业的技术支持队伍。随着业务系统的增加,为了更加有效的管理IT基础设施,医院在之前便采用了服务器虚拟化平台,通过虚拟化技术将服务器资源、存储资源、网络资源全面池化,实现对所有资源的统一化、集中化、智能化调度和管理。
存储设备需要保证两个存储设备上的数据能够时刻保持一致,即服务器端的写操作I/O要能够同时送到两个存储设备,通常情况下,在操作系统层面是无法实现的。同时还要确保在一台磁盘阵列出现故障时,另外一个磁盘阵列能够迅速的提供数据传输,保证业务连续性。

通常会使用两台光纤交换机搭建整个本地存储网络的SAN架构,形成冗余架构,提高系统的稳定性;同时应用服务器配置光纤HBA卡与交换机通过光纤链路连接,提高数据的整体传输速度。
Infortrend DS 1012R通过FC-SAN存储网络提供高质量的数据存储服务。HIS系统的主要数据类型是结构化的数据库文件,数据量一般在500GB以内,数据IO的块大小为4K-8K,属于典型的并发小I/O应用,需要存储性能提供较高的IOPS性能,DS 1012R系列FC存储在高并发数据库应用下IOPS高达550K,数据吞吐量可达到5.5GB/s的顺序读和1.9GB/s的顺序写,如此卓越的数据处理效率既可以满足当下数据的存取需求,可在线动态扩充容量及性能,为客户提供富于弹性的数据存储架构,又能不断满足HIS系统规模扩展或多业务融合时严苛的存储性能及可靠性要求,DS 1012R的快照及数据复制功能则进一步强化了数据安全。

针对医疗行业日后非结构化数据的大量增加,如电影、图片和视频,对存储空间需求很大,因此成本较低、灵活性高、又能无限扩展的云存储将成为用户下一阶段的需求。Infortrend推出的EonStor GS/GSe/GSe Pro系列为统一存储解决方案,将SAN、NAS和云整合到一个系统,获得强大存储功能。内嵌Infortrend自主研发的虚拟化平台,更稳定更高效,可以独立支持SAN和NAS两套系统,可将数据存储性能发挥到极致。SAN架构下全闪存端对端实测45万IOPS,11GB/s数据吞吐量,以及NAS架构下实测3GB/s带宽,再配合丰富的企业级数据服务,让EonStor GS系列在支持大数据存储容量,数据分析和数据安全中,成为真正的核心。其中最大亮点整合支持云存储,支持私有云和公有云服务,协助打造各种医疗云、政府云、广电云等,为客户的大数据保驾护航。
Infortrend始终秉承"技术创新"的理念,专注于专业磁盘阵列系统的研发与制造,掌握所有最尖端的专业存储技术,所生产的盘阵可分别支持SCSI、Fibre、SATA及SAS等多种不同的磁盘接口,从研发设计,到售后服务,"用户至上"的理念始终贯穿于Infortrend的整个生产销售流程. Infortrend EonStor,是您绝对值得信赖的存储伙伴。
好文章,需要你的鼓励
谷歌发布新的AI学术搜索工具Scholar Labs,旨在回答详细研究问题。该工具使用AI识别查询中的主要话题和关系,目前仅对部分登录用户开放。与传统学术搜索不同,Scholar Labs不依赖引用次数或期刊影响因子等传统指标来筛选研究质量,而是通过分析文档全文、发表位置、作者信息及引用频次来排序。科学界对这种忽略传统质量评估方式的新方法持谨慎态度,认为研究者仍需保持对文献质量的最终判断权。
武汉大学研究团队提出DITING网络小说翻译评估框架,首次系统评估大型语言模型在网络小说翻译方面的表现。该研究构建了六维评估体系和AgentEval多智能体评估方法,发现中国训练的模型在文化理解方面具有优势,DeepSeek-V3表现最佳。研究揭示了AI翻译在文化适应和创意表达方面的挑战,为未来发展指明方向。
Meta发布第三代SAM(分割一切模型)系列AI模型,专注于视觉智能而非语言处理。该模型擅长物体检测,能够精确识别图像和视频中的特定对象。SAM 3在海量图像视频数据集上训练,可通过点击或文本描述准确标识目标物体。Meta将其应用于Instagram编辑工具和Facebook市场功能改进。在野生动物保护方面,SAM 3与保护组织合作分析超万台摄像头捕获的动物视频,成功识别百余种物种,为生态研究提供重要技术支持。
参数实验室等机构联合发布的Dr.LLM技术,通过为大型语言模型配备智能路由器,让AI能根据问题复杂度动态选择计算路径。该系统仅用4000个训练样本和极少参数,就实现了准确率提升3.4%同时节省计算资源的突破,在多个任务上表现出色且具有强泛化能力,为AI效率优化开辟新方向。