Dell EMC推出了旨在处理极高性能NAS工作负载的Isilon全闪存系统。这是今年年初EMC World大会上公布的Isilon Nitro进展的一个高潮。
你可以从4节点、4U机箱开始,从96TB到924TB容量,250000 IOPS,最高15GB/s的聚合带宽。
扩展到超过100个机箱,超过400个节点以及92.4PB的容量。这意味着有2500万IOPS,最高1.5TB/s的总聚合带宽,届时将提供多种配置。
这将是一个纯Isilon AF集群或者AF节点,可以添加到现有的Isilon集群中。
4节点起始配置的机箱是一个统一的机箱,而不是4个单独的1U机箱堆栈在一起。
我们认为,这个4U机箱包含60个驱动器,是三星的15.36TB 3D NAND TLC(3bit/cell)SSD,采用NVMe接口。去年2月Isilon产品线增加了HD4000 60插槽的存储设备。
Isilon AF支持NFS、SMB、HDFS、Object、NDMP、FTP、OpenStack、Swift和更多访问协议,Dell EMC表示。它可实现最高80%的存储利用率,1个100机箱的集群内可实现单个文件系统和卷。
重复数据删除功能(贴牌为Isilon SmartDedupe)可以降低存储需求最多可达30%甚至更多。
该系统中支持所有OneFS OS企业功能。
Isilon AF提供了基于角色的访问控制(RBAC);安全访问域;一次写多次读(WORM)数据保护;文件系统审查;通过自加密驱动器(SED)做静态数据加密。
在Isilon工程师看来,极端NAS工作负载包括极端NAS性能——例如4K数据流、基因组测序、电子设计自动化,以及Hortonworks、Cloudera、Pivotal、IBM和Splun等大数据分析厂商的近线实时分析工作负载。
Dell EMC可能已经厌倦了Avere的FXT NAS加速器,显示当前SAS和SATA磁盘驱动器系统不足以支撑像SFX创建及渲染这样的高端工作负载。
与此前高端S系列的定位
这次推出的系统与此前最高性能的S系列Isilon节点有什么关联?S210是在2015年2月推出,一个集群内有7.2TB、14.4TB、21.6TB种容量的节点,144个节点最高容量为3.11PB。全配置的集群提供375万IOPS,因此每个节点是26000 IOPS。
现在EMC表示,S210是从16TB的3节点集群开始,可横向扩展到144个节点,超过4PB,提供300万IOPS,显然要比Isilon AF更慢、密度更低。
Isilon AF与Qumulo以及Pure FlashBlade
初创公司Qumulo在他们的节点中使用充氦气硬盘,该集群基于HPE硬件,采用闪存-磁盘的混合设计。4U QC208配置了2.6TB和208TB磁盘。4节点的QC260集群原始容量1.04PB,使用10TB驱动器。
我们认为,Qumulo系统将有出色的表现,Qumulo 4U 1.04PB与Isilon AF的924TB在存储密度上没有太大差别。但是在成本上应该会相差很大,Isilon要更贵一些。
Pure即将推出的FlashBlade系统将对标Isilon的这款闪存系统。4U系统有15GB/s带宽,533TB原始容量——低于Isilon AF的924TB——采用专有的闪存卡,而不是商用SSD。
Isilon全闪存横向扩展NAS存储现在可以预定,将在2017年供货,可能是在2月,与新版本的OneFS一起,作为一项免费升级提供给现有客户,我们现在还没有得到价格信息。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。