Dell EMC推出了旨在处理极高性能NAS工作负载的Isilon全闪存系统。这是今年年初EMC World大会上公布的Isilon Nitro进展的一个高潮。

你可以从4节点、4U机箱开始,从96TB到924TB容量,250000 IOPS,最高15GB/s的聚合带宽。
扩展到超过100个机箱,超过400个节点以及92.4PB的容量。这意味着有2500万IOPS,最高1.5TB/s的总聚合带宽,届时将提供多种配置。
这将是一个纯Isilon AF集群或者AF节点,可以添加到现有的Isilon集群中。
4节点起始配置的机箱是一个统一的机箱,而不是4个单独的1U机箱堆栈在一起。
我们认为,这个4U机箱包含60个驱动器,是三星的15.36TB 3D NAND TLC(3bit/cell)SSD,采用NVMe接口。去年2月Isilon产品线增加了HD4000 60插槽的存储设备。
Isilon AF支持NFS、SMB、HDFS、Object、NDMP、FTP、OpenStack、Swift和更多访问协议,Dell EMC表示。它可实现最高80%的存储利用率,1个100机箱的集群内可实现单个文件系统和卷。
重复数据删除功能(贴牌为Isilon SmartDedupe)可以降低存储需求最多可达30%甚至更多。
该系统中支持所有OneFS OS企业功能。
Isilon AF提供了基于角色的访问控制(RBAC);安全访问域;一次写多次读(WORM)数据保护;文件系统审查;通过自加密驱动器(SED)做静态数据加密。
在Isilon工程师看来,极端NAS工作负载包括极端NAS性能——例如4K数据流、基因组测序、电子设计自动化,以及Hortonworks、Cloudera、Pivotal、IBM和Splun等大数据分析厂商的近线实时分析工作负载。
Dell EMC可能已经厌倦了Avere的FXT NAS加速器,显示当前SAS和SATA磁盘驱动器系统不足以支撑像SFX创建及渲染这样的高端工作负载。
与此前高端S系列的定位
这次推出的系统与此前最高性能的S系列Isilon节点有什么关联?S210是在2015年2月推出,一个集群内有7.2TB、14.4TB、21.6TB种容量的节点,144个节点最高容量为3.11PB。全配置的集群提供375万IOPS,因此每个节点是26000 IOPS。
现在EMC表示,S210是从16TB的3节点集群开始,可横向扩展到144个节点,超过4PB,提供300万IOPS,显然要比Isilon AF更慢、密度更低。
Isilon AF与Qumulo以及Pure FlashBlade
初创公司Qumulo在他们的节点中使用充氦气硬盘,该集群基于HPE硬件,采用闪存-磁盘的混合设计。4U QC208配置了2.6TB和208TB磁盘。4节点的QC260集群原始容量1.04PB,使用10TB驱动器。
我们认为,Qumulo系统将有出色的表现,Qumulo 4U 1.04PB与Isilon AF的924TB在存储密度上没有太大差别。但是在成本上应该会相差很大,Isilon要更贵一些。
Pure即将推出的FlashBlade系统将对标Isilon的这款闪存系统。4U系统有15GB/s带宽,533TB原始容量——低于Isilon AF的924TB——采用专有的闪存卡,而不是商用SSD。
Isilon全闪存横向扩展NAS存储现在可以预定,将在2017年供货,可能是在2月,与新版本的OneFS一起,作为一项免费升级提供给现有客户,我们现在还没有得到价格信息。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。