如果尚未熟悉生成式人工智能(GenAI)的概念,很多人可能已经通过像Chat GPT和Sora这样的AI模型间接接触到了这项技术。这些模型是生成式AI技术的实际应用案例,它们运用大型语言模型(LLM),根据输入的数据生成全新的内容,并且能够将抽象的人类思维转换为具体、可感知的作品。
在当今技术日新月异的时代,大语言模型(LLM)在人工智能(AI)领域扮演着越来越重要的角色。大语言模型专注于生成文本,而生成式AI则涵盖更广泛的内容生成任务并进行创新,不仅限于语言,还包括图像、音乐等。
生成式AI最引人注目的特点是它改变了人类与计算机智能的互动方式,这使得编码技能或计算机专业知识并非必需。相反,仅通过键入问题或提供语音提示,就能轻松与生成式AI互动。这种方式使得人工智能的应用变得更为普及,逐步实现了让每个人都能够使用AI的愿景。以下是关于生成式AI,每个人都应当了解的三个关键点。
1.并非所有的生成式AI都是大语言模型
大语言模型是生成式AI的关键元素,也是生成式AI的一种形式,专注于产生和解析人类的语言。这些模型借助神经网络和其他深度学习算法来模拟和产出人类式的文本交流。
ChatGPT等大语言模型的知名度正在逐渐提升。但是,生成式AI的应用远远超出了这些,它的其他用途可能带来更深远的影响。
2.生成式AI的商业价值:实用性与创新的驱动力
在当今的商业世界中,生成式AI的价值不仅体现在其解决实际问题的能力上,更在于它如何提供可持续和可扩展的解决方案,以及它如何在不同行业中推动创新和增强竞争力。企业通常会在软件开发、内容创作、智能AI助理和客户互动这四个关键领域来衡量生成式AI的潜在价值。
ERP软件供应商RealSteel公司的总裁Kevin Ameche指出,要想利用好生成式AI的潜力,企业必须首先明确自己面临的问题和追求的目标。此外,高质量数据的使用对于训练模型至关重要。他建议可以与AI专家合作,以定制和优化模型,以满足企业的具体需求,并保持对技术发展的持续关注。
同时,全球分析和人工智能领域的领导者SAS的数据科学家兼物联网行业顾问Manfred Kügel也提醒到,尽管生成式AI具有巨大的潜力,但目前仍处于发展的早期阶段。他建议企业提供易于使用的工具,以促进技术的快速采用,并解决可能存在的结构或文化障碍。 例如SAS客户智能360现已支持与生成式AI模型进行集成,可帮助客户更高效地制定营销计划、实现内容创作和旅程设计等活动。
总的来说,生成式AI的重要性在于其为商业带来的价值,这不仅仅是技术的先进性,更重要的是它在实际应用中的成效和对创新的推动作用。企业需要在理解这一技术的同时,也要关注其发展阶段,并采取相应的措施来确保能够最大限度地利用生成式AI的潜力。
3.在未来的许多年里,人工监督和治理仍将非常重要
生成式AI在推动社会进步的过程中,也引发了关于其创造力与模仿能力界限的讨论。这项技术虽然蕴含巨大潜力,但同样伴随着安全性、数据隐私、公平性和资源消耗等多重风险。因此,开发更高效的模型和训练方法显得尤为重要。此外,对人工智能实施恰当的监管措施,以及考虑这些监管措施在不同国家和地区的适用性,也是当前面临的重要议题。
其中,Ameche提醒说,使用带有偏见的数据或不适当的提示可能会对项目带来不利影响,因此在处理AI模型的输出时必须更为谨慎。Kügel也强调了对生成式AI能力合理评估的重要性,并建议在采纳AI技术时采取均衡的策略,实施保护措施和信任度检验,以确保这项技术能够辅助而非替代人类专家。
随着技术的不断进步,生成式AI已经成为日常生活和商业实践中不可或缺的一部分。未来,明确的行业指导方针、法规框架和全球标准体系,将共同努力实现人工智能技术公平、可靠和高效的发展,创造更多的机遇和价值,带来一个更加智能、更加互联的世界。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。