在这个信息化迅猛发展的时代,反欺诈领域的专家们正站在一个新的技术革命的门槛上——生成式人工智能(AI)。这项技术以其独特的能力,即从现有数据中学习并生成新的信息,引起了广泛的关注。据最新研究显示,超过八成的反欺诈专家预计到2025年,他们的工作将与生成式AI紧密相连。
这项由SAS和美国注册舞弊审查师协会(ACFE)联合进行的研究,揭示了一个不容忽视的现实:尽管对生成式AI的兴趣空前高涨,但其在实际应用中仍面临诸多挑战。《2024反欺诈技术基准报告》汇集了来自全球近1200位ACFE成员的调查结果,展现了自2019年以来反欺诈技术的关键演进趋势。
报告中的数据显示,人们对AI和机器学习(ML)技术的关注已达到前所未有的高度。18%的反欺诈专业人士已经在使用AI/ML技术,另有32%的专业人士计划在未来两年内开始实施这些技术。这一趋势预示着,到明年年底,使用AI/ML技术的比例可能会增长近三倍。
然而,AI和ML技术的部署并没有达到预期的速度。自2019年以来,这些技术在欺诈侦测和防范领域的实际应用增长了5%,远低于之前预期的采用率。这一现象表明,尽管对高级分析技术的需求强烈,但将其应用于实践却是一个复杂的过程。
此外,报告还指出,尽管许多数据分析技术已经成熟,但生物识别和机器人技术在反欺诈领域的应用仍在稳步增长。特别是在银行和金融服务业,这些技术的应用尤为广泛。
面对生成式AI的易获取性和易用性,ACFE总裁John Gill警示道,一旦这些工具落入不法之徒之手,可能带来严重后果。因此,企业在增加反欺诈技术预算的同时,也需要考虑如何在符合伦理道德的前提下使用这些技术。
SAS风险与欺诈管理、合规解决方案高级副总裁Stu Bradley强调了选择合适技术合作伙伴的重要性,并提到SAS Viya这样的云原生、支持多种编程语言的AI平台,可以帮助企业更轻松地从风险管理解决方案中获益。SAS还提供了在线数据仪表板,让用户可以根据行业、区域和组织规模查阅调查结果,进一步了解反欺诈技术的跨行业趋势。
生成式AI的未来究竟是繁荣还是衰败?这个问题的答案尚未揭晓。但可以肯定的是,企业在采用生成式AI和其他AI技术时,必须慎之又慎。在追求创新的同时,企业需要不断自问:“我们能做什么?”和“我们应该做什么?”随着时间的推移,生成式AI的能力将不断增强,它在反欺诈工作中的作用也将越来越显著。企业需要制定合适的指导方针,以最大限度地减少错误和偏见。ACFE研究总监Mason Wilder的话或许是对未来最好的概括:“让我们拭目以待,看这项技术的采用速度将会有多快。”
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。