在这个信息化迅猛发展的时代,反欺诈领域的专家们正站在一个新的技术革命的门槛上——生成式人工智能(AI)。这项技术以其独特的能力,即从现有数据中学习并生成新的信息,引起了广泛的关注。据最新研究显示,超过八成的反欺诈专家预计到2025年,他们的工作将与生成式AI紧密相连。
这项由SAS和美国注册舞弊审查师协会(ACFE)联合进行的研究,揭示了一个不容忽视的现实:尽管对生成式AI的兴趣空前高涨,但其在实际应用中仍面临诸多挑战。《2024反欺诈技术基准报告》汇集了来自全球近1200位ACFE成员的调查结果,展现了自2019年以来反欺诈技术的关键演进趋势。
报告中的数据显示,人们对AI和机器学习(ML)技术的关注已达到前所未有的高度。18%的反欺诈专业人士已经在使用AI/ML技术,另有32%的专业人士计划在未来两年内开始实施这些技术。这一趋势预示着,到明年年底,使用AI/ML技术的比例可能会增长近三倍。
然而,AI和ML技术的部署并没有达到预期的速度。自2019年以来,这些技术在欺诈侦测和防范领域的实际应用增长了5%,远低于之前预期的采用率。这一现象表明,尽管对高级分析技术的需求强烈,但将其应用于实践却是一个复杂的过程。
此外,报告还指出,尽管许多数据分析技术已经成熟,但生物识别和机器人技术在反欺诈领域的应用仍在稳步增长。特别是在银行和金融服务业,这些技术的应用尤为广泛。
面对生成式AI的易获取性和易用性,ACFE总裁John Gill警示道,一旦这些工具落入不法之徒之手,可能带来严重后果。因此,企业在增加反欺诈技术预算的同时,也需要考虑如何在符合伦理道德的前提下使用这些技术。
SAS风险与欺诈管理、合规解决方案高级副总裁Stu Bradley强调了选择合适技术合作伙伴的重要性,并提到SAS Viya这样的云原生、支持多种编程语言的AI平台,可以帮助企业更轻松地从风险管理解决方案中获益。SAS还提供了在线数据仪表板,让用户可以根据行业、区域和组织规模查阅调查结果,进一步了解反欺诈技术的跨行业趋势。
生成式AI的未来究竟是繁荣还是衰败?这个问题的答案尚未揭晓。但可以肯定的是,企业在采用生成式AI和其他AI技术时,必须慎之又慎。在追求创新的同时,企业需要不断自问:“我们能做什么?”和“我们应该做什么?”随着时间的推移,生成式AI的能力将不断增强,它在反欺诈工作中的作用也将越来越显著。企业需要制定合适的指导方针,以最大限度地减少错误和偏见。ACFE研究总监Mason Wilder的话或许是对未来最好的概括:“让我们拭目以待,看这项技术的采用速度将会有多快。”
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。