在这个信息化迅猛发展的时代,反欺诈领域的专家们正站在一个新的技术革命的门槛上——生成式人工智能(AI)。这项技术以其独特的能力,即从现有数据中学习并生成新的信息,引起了广泛的关注。据最新研究显示,超过八成的反欺诈专家预计到2025年,他们的工作将与生成式AI紧密相连。
这项由SAS和美国注册舞弊审查师协会(ACFE)联合进行的研究,揭示了一个不容忽视的现实:尽管对生成式AI的兴趣空前高涨,但其在实际应用中仍面临诸多挑战。《2024反欺诈技术基准报告》汇集了来自全球近1200位ACFE成员的调查结果,展现了自2019年以来反欺诈技术的关键演进趋势。
报告中的数据显示,人们对AI和机器学习(ML)技术的关注已达到前所未有的高度。18%的反欺诈专业人士已经在使用AI/ML技术,另有32%的专业人士计划在未来两年内开始实施这些技术。这一趋势预示着,到明年年底,使用AI/ML技术的比例可能会增长近三倍。
然而,AI和ML技术的部署并没有达到预期的速度。自2019年以来,这些技术在欺诈侦测和防范领域的实际应用增长了5%,远低于之前预期的采用率。这一现象表明,尽管对高级分析技术的需求强烈,但将其应用于实践却是一个复杂的过程。
此外,报告还指出,尽管许多数据分析技术已经成熟,但生物识别和机器人技术在反欺诈领域的应用仍在稳步增长。特别是在银行和金融服务业,这些技术的应用尤为广泛。
面对生成式AI的易获取性和易用性,ACFE总裁John Gill警示道,一旦这些工具落入不法之徒之手,可能带来严重后果。因此,企业在增加反欺诈技术预算的同时,也需要考虑如何在符合伦理道德的前提下使用这些技术。
SAS风险与欺诈管理、合规解决方案高级副总裁Stu Bradley强调了选择合适技术合作伙伴的重要性,并提到SAS Viya这样的云原生、支持多种编程语言的AI平台,可以帮助企业更轻松地从风险管理解决方案中获益。SAS还提供了在线数据仪表板,让用户可以根据行业、区域和组织规模查阅调查结果,进一步了解反欺诈技术的跨行业趋势。
生成式AI的未来究竟是繁荣还是衰败?这个问题的答案尚未揭晓。但可以肯定的是,企业在采用生成式AI和其他AI技术时,必须慎之又慎。在追求创新的同时,企业需要不断自问:“我们能做什么?”和“我们应该做什么?”随着时间的推移,生成式AI的能力将不断增强,它在反欺诈工作中的作用也将越来越显著。企业需要制定合适的指导方针,以最大限度地减少错误和偏见。ACFE研究总监Mason Wilder的话或许是对未来最好的概括:“让我们拭目以待,看这项技术的采用速度将会有多快。”
好文章,需要你的鼓励
传统数据工程面临数据质量差、治理不善等挑战,成为AI项目的最大障碍。多智能体AI系统通过协作方式正在彻底改变数据准备、治理和应用模式。Google Cloud基于Gemini大语言模型构建协作生态系统,让不同智能体专门负责数据工程、科学、治理和分析等任务。系统通过分层架构理解组织环境,自主学习历史工作流程,能够预防问题并自动处理重复性任务,大幅提升效率。
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
微软推出Copilot调优功能,让企业通过低代码工具利用自动化微调技术训练企业数据。与基于公开数据的通用AI模型不同,企业需要理解内部数据和流程的专业化模型。Gartner预测专业化GenAI模型市场将在2026年翻倍至25亿美元。这些模型通常基于开源模型构建,部署为小语言模型,提供更好的成本控制和数据安全性,同时更易符合欧盟AI法案要求。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。