最新研究显示,多数美国企业对生成式AI抱有期望,期望通过它提升业务效率。然而,企业领导者面临理解上的偏差、缺乏明确的战略规划和专业人才,难以充分实现和衡量该技术的价值。
研究由SAS和科尔曼·帕克斯公司合作进行,调查了300位决策者,探讨了他们的投资重点和组织挑战。发现仅10%的企业符合法规要求。研究结果将在2024年晚些时候公布,详细内容见《揭秘生成式AI的潜力与挑战:如何实现竞争优势》。
主要挑战包括:
●治理框架缺失:93%的企业尚未建立全面的生成式AI治理框架,面临合规风险。
●AI集成问题:企业在将生成式AI融入现有系统时遇到兼容性问题。
●人才短缺:企业难以招聘到具备AI技能的人才,现有员工也缺乏必要的技能。
●成本预测:大语言模型的成本高昂,包括Token成本和其他长期、复杂的成本。
SAS AI战略顾问Marinela Profi建议,企业应制定阶段性战略,重视大语言模型的整合、治理和可解释性。通过可持续和可扩展的方式应用生成式AI,以满足实际需求并保持业务相关性和韧性。
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。