最新研究显示,多数美国企业对生成式AI抱有期望,期望通过它提升业务效率。然而,企业领导者面临理解上的偏差、缺乏明确的战略规划和专业人才,难以充分实现和衡量该技术的价值。
研究由SAS和科尔曼·帕克斯公司合作进行,调查了300位决策者,探讨了他们的投资重点和组织挑战。发现仅10%的企业符合法规要求。研究结果将在2024年晚些时候公布,详细内容见《揭秘生成式AI的潜力与挑战:如何实现竞争优势》。
主要挑战包括:
●治理框架缺失:93%的企业尚未建立全面的生成式AI治理框架,面临合规风险。
●AI集成问题:企业在将生成式AI融入现有系统时遇到兼容性问题。
●人才短缺:企业难以招聘到具备AI技能的人才,现有员工也缺乏必要的技能。
●成本预测:大语言模型的成本高昂,包括Token成本和其他长期、复杂的成本。
SAS AI战略顾问Marinela Profi建议,企业应制定阶段性战略,重视大语言模型的整合、治理和可解释性。通过可持续和可扩展的方式应用生成式AI,以满足实际需求并保持业务相关性和韧性。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。