最新研究显示,多数美国企业对生成式AI抱有期望,期望通过它提升业务效率。然而,企业领导者面临理解上的偏差、缺乏明确的战略规划和专业人才,难以充分实现和衡量该技术的价值。
研究由SAS和科尔曼·帕克斯公司合作进行,调查了300位决策者,探讨了他们的投资重点和组织挑战。发现仅10%的企业符合法规要求。研究结果将在2024年晚些时候公布,详细内容见《揭秘生成式AI的潜力与挑战:如何实现竞争优势》。
主要挑战包括:
●治理框架缺失:93%的企业尚未建立全面的生成式AI治理框架,面临合规风险。
●AI集成问题:企业在将生成式AI融入现有系统时遇到兼容性问题。
●人才短缺:企业难以招聘到具备AI技能的人才,现有员工也缺乏必要的技能。
●成本预测:大语言模型的成本高昂,包括Token成本和其他长期、复杂的成本。
SAS AI战略顾问Marinela Profi建议,企业应制定阶段性战略,重视大语言模型的整合、治理和可解释性。通过可持续和可扩展的方式应用生成式AI,以满足实际需求并保持业务相关性和韧性。
好文章,需要你的鼓励
ETSI 发布报告详述18个6G融合感知应用实例及部署方案,探讨关键技术、性能指标和标准化框架,为未来系统奠定基础。
Google 推出 Gemini 2.5 Flash,新功能“思考预算”允许开发者按需调节 AI 推理程度,实现成本与性能的精准平衡,同时配合多项新功能提升整体应用价值。
Google 与 AWS 指出,因微软云许可政策变更,长期依赖 Windows 的企业难以花费巨资与多年时间将工作负载转移至 Linux 平台,导致客户在云服务选择上受限。
文章指出高管与IT领导对数据质量信心存在明显差距。高层依赖整洁汇总的仪表盘,而接触数据前线的IT领导则发现系统断裂、数据混乱及仓促上线的AI项目隐患,建议加强内部透明度和完善数据管理策略。