在美光第二代HBM3芯片亮相一个月后, SK海力士正在对一款HBM3E芯片进行采样。
HBM3E是第3代高带宽存储器扩展版,遵循2022年1月推出的HBM3标准。这种存储器是由放置在逻辑模具上方的DIMM芯片堆集构建的,并通过中介器连接到GPU或CPU上。或者,存储芯片可以直接堆叠在GPU上。无论哪种方式,DRAM到GPU/CPU的带宽都高于通过插槽连接到处理器的DRAM的传统X86架构。行业机构JEDEC规定了HBM标准,其HBM3标准于1月发布。现在,在人工智能和机器学习热潮的推动下,供应商们正急于让它过时。
过去一段时间存储市场需求低迷,存储器和NAND供应过剩,如今存储器市场开始出现一些复苏迹象。SK海力士DRAM产品规划主管Sungsoo Ryu表示:“通过增加高价值HBM产品的供应份额,SK海力士也将寻求快速的业务转型。”
HBM世代表。
该公司自称是世界上唯一的HBM3产品“大规模生产商”之一,并计划从明年上半年开始批量生产HBM3E。SK海力士谈到了其为人工智能市场生产的内存,目前由于对ChatGPT型大型语言模型(LLM)的需求而大幅扩大。SK认为LLM处理是内存有限的,并旨在纠正这一点。
SK海力士产品的细节很少,该公司只表示每秒可处理高达1.15 TB的数据,相当于每秒处理230多部5GB大小的全高清电影。美光上个月宣布了一款超过1.2TBps的HBM3第二代产品,这表明SK海力士还有工作要做。
美光的HBM3第2代产品采用8层堆叠,容量为24GB,即将推出36GB容量的12层堆叠版本。SK海力士于4月宣布推出12层堆栈HBM3产品,容量为24GB。
我们怀疑SK海力士的HBM3E产品可能是基于这款容量为24GB的12层堆叠产品开发的,并且可能实现36GB的容量。
SK海力士表示,HMB3E产品与HBM3向下兼容;只要把它放在现有的设计中,系统即可更快运行。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。