在上周召开的Pure Accelerate大会上,这家新兴存储企业谈到如何向其NVMe访问型存储机架当中引入智能化要素。
Pure公司的全闪存阵列拥有一套双控制器设计,这两套控制器负责与非智能存储机架进行通信。这一思路的主要核心在于立足机架层级实现控制器智能,其中NVMe架构则负责将上层控制器智能与下层机架智能进行结合。

如此一来,存储机架即可处理驱动器上的操作,减轻这部分任务给上层控制器带来的负担,并允许机架本身完成更多常见操作任务--例如对接向上扩展规模更为可观的阵列。
这亦可能意味着两套控制器能够运行更多上层服务,例如文件系统等。此外,厂商甚至会考虑进一步增加控制器的实际数量。
作为一家同样计划推动NVMe架构技术的全闪存阵列供应商,Kaminario公司据称也在考虑以类似的方式将智能化要素引入存储阵列当中。
东芝与闪存工艺
东芝公司在本届Pure Accelerate大会上展示了其3D NAND发展路线图。根据尼古拉斯公司分析师兼总经理Aaron Rakers的说明,东芝方面谈到将堆叠层数提升至200左右。
目前东芝公司及其代工合作伙伴西部数据正凭借其BiCS技术打造64层3D NAND,并由此构建起一款512 Gb芯片。将层数提升三倍至192层,则意味着能够带来一款1.536 Tb晶片。如果双方再将存储单元尺寸加以进一步缩减,那么容量水平还将达到新的高度。
东芝公司的XG5 NVMe M.2驱动器采用这款芯片,并在其NVMe M.2版本当中分别提供256 GB、512 GB与1 TB容量选项。西部数据公司的蓝盘SSD同样使用此款芯片,并将容量提升至2 TB级别。
如果将该芯片的容量提升三倍,即由512 Gb到1.5 Tb,则意味着XG5技术在容量上可增长至3 TB,而西部数据的蓝盘SSD则将增长至6 TB。
东芝方面还谈到其四层单元(即QLC)技术,并表示QLC 3D NAND芯片即将来临。我们再据此进行计算--目前的XG5与西部数据蓝盘驱动器采用TLC(即三层单元),如果将其变更为QLC驱动器,则容量还能够提升三分之一。
如此一来,一款QLC、192层XG5将拥有4 TB容量,同样的西部数据蓝盘SSD则将拥有8 TB容量。这些QLC驱动器的写入寿命将较为低下,因此只适用于所谓主动访问归档类应用。
再回到Pure公司--假定Pure公司也会在其阵列当中采用NVMe架构与QLC闪存这一组合,那么也许将由此诞生出一款主动归档FlashBlade阵列方案。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。