科技和风险投资领域的十几家知名公司正在把赌注压在一家会撼动数据存储市场、名为Cohesity的初创公司上。
领投的GV是Alphabet的风险投资部门,这轮融资中已经向Cohesity投资超过9000万美元,使其外部总投资金额超过1.6亿美元。就在不到一年前,Cohesity走出隐身模式,推出了一款旨在保存所谓二级数据的存储系统。
据Cohesity称,这类数据包含备份、归档文件以及企业几乎不定期使用的任何类型的信息记录。Cohesity宣称这种信息在企业存储基础设施中占比大约能达到80%。Cohesity的系统提供了一个集中化的控制台,允许管理员在一个地方统一管理他们的所有文件,这在很多方面都是非常便利的。
首先,Cohesity的平台不需要企业处理二级数据所常用的单独的工具和设备。Cohesity宣称,他们的方法打消了技术壁垒,以前这些壁垒使得管理员很难找到冗余的信息,无法为其他工作负载释放空间。
Cohesity通过提供一系列旨在简化日常运营的高级管理功能来解决这个问题。Cohesity的平台允许存储人员查找记录、分析存储使用情况以寻找需要改进的方面,并采取措施以确保信息是随时可用的。如果企业本地硬件空间不足的话,它还提供了将文件迁移到云中的选项。
Cohesity以预配置系统和虚拟设备(可以安装在主流公有云平台或者第三方硬件上)的形式售卖这款平台。目前它兼容来自HPE和思科的硬件设备,而且这两家公司与GV一起都为这轮融资做出了贡献。
根据该公司的融资公告,Cohesity将把这笔新的资金用于扩大全球业务,扩大销售、营销和工程规模,专注于开发“除了数据保护之外的二级存储使用实例”。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。