WD推出了一款Skyhawk SSD、收购SanDisk SATA接口CloudSpeed SSD的NVMe版本,与它自己的后SanDisk和后HGST Skyhawk品牌并驾齐驱。
Skyhawk是一款中低端的高速SSD,2.5英寸,采用MLC(2bits/cell)NAND而不是速度较慢的、不那么耐用的TLC(3bits/cell),以及NVMe/PCIe接口,而不是旧的基于磁盘的SATA接口。
Skyhawk SSD采用15nm NAND,配置PCIe Gen3控制器,容量点从1.6TB到3.84TB,采用热插拔的、U2、2.5英寸规格,两种版本,标准版本针对读优化的工作负载,Ultra版本针对混合使用的工作负载,有更长的耐用性,通过降低容量使得现有单元损耗的时候可以使用备用单元。
WD表示,Skyhawk提供了:
- 连续性能是同类企业级SATA SSD的近3倍
- 相比25W PCIe SSD,更低的12W功耗能够实现更广泛的部署
- 遵循行业标准NVMe 1.2协议,内装针对所有主流操作系统的驱动程序
- 提供2个写耐用泳道(标准和Ultra)
- 提高的性能改进了服务器整合
WD收购HGST和SanDisk获得了他们的SSD品牌,例如HGST的FlashMax和Ultrastar SN100,以及SanDisk的CloudSpeed和IoScale。我们在这里看到了第二个WD SSD品牌类型,黑盘、蓝盘和绿盘;黑盘已经在1月的CES上展示了。
我们可以把SkyHawk 看作是重新设计的SanDisk CloudSpeed SATA SSD。例如,2015年8月推出的CloudSpeed Ultra Gen II SSD采用15nm MLC NAND,与SkyHawk一样,是2.5英寸的,有400GB、800GB和1.6TB几个容量点,性能为:
- 76,000随机读IOPS
- 32,000随机写IOPS
- 530MB/sec连续读
- 460MB/sec连续写
- 80μs, 56μs平均r/w延迟
- 1.8 DWPD(驱动器每日写入)为5年
Skyhawk在某些方面更好(例如速度),但在其他方面(延迟、耐用性)一般。标准版有1.92TB和3.84TB两个容量点,性能数据如下:
- 250,000随机读IOPS
- 47,000随机写IOPS
- 1.5GB/sec连续读
- 1.17B/sec连续写
- 在1.92TB/3.84TB的容量水平上,读延迟为127/128μs,写延迟为1,331/718μs
- 0.5/0.6 DWPD为5年
Ultra版本有1.96TB和3.2TB两个容量点,性能数据如下:
- 250,000随机读IOPS
- 83,000随机写IOPS
- 1.7GB/sec连续读
- 1.2GB/sec连续写
- 在1.6TB/3.2TB容量水平上,读延迟为126/125μs,写延迟为693/351μs
- 1.2/1.7 DWPD为5年
随机IOPS和连续带宽方面有所增加。但令人好奇的是,这里的NVMe/PCIe接口延迟比旧的SATA接口还要高。
WD在新闻稿中写到,Skyhawk“为数据中心带来了企业级的可靠性,出色的耐用性和卓越的性能,针对数据分析处理(OLAP)、数据库、财务和电子商务系统、云虚拟化、媒体流、视频点播等。”
我们猜测即将推出的WD SSD将针对其他细分市场,采用其他更强大的、掠食性的鸟类、哺乳动物或者鱼类的名字。
Skyhawk有200万小时的MTBF评级、即时安全擦除和0.44%的年故障率。
Skyhawk SSD目前已经为选定的OEM提供了样品,预计全面供货在今年第二季度,目前我们没有得到定价信息。
好文章,需要你的鼓励
随着GPU成为AI工作负载训练和运营的关键,越来越多的云服务提供商开始提供云GPU实例。这为希望避免部署GPU硬件费用和复杂性的组织带来好消息。云GPU实例可按超大规模与专业化提供商、通用与专用实例、共享与独占服务器进行分类。选择时需考虑工作负载类型、GPU类型、成本、延迟和控制级别等因素。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
企业云服务平台IFS收购硅谷代理AI专家theLoops,推出"工业AI"概念。该技术旨在创建具备语义环境感知能力的自主AI代理,专门服务于制造、能源、建筑等资产密集型行业。这些工业AI代理能够理解业务职责,遵循行业规则,与人类协同工作,执行实际工作任务而非简单的聊天或辅助功能,为企业带来可衡量的生产力提升和投资回报。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。