阵列厂商Infinidat公布了第三次重大的软件升级,增加了压缩、内嵌iSCSI支持以及增强的阵列分析。
Infinidat的架构有3个控制器节点,每个节点都可以看到所有驱动器,避开了全闪存的设计,而是依赖于1.2TB-3.2TB的DRAM缓存,24TB-210TB的NAND缓存,最多480个7200转的硬盘。该系统提供了7个9个正常运转时间,也就是99.99999%的可靠性。
下面就是该系列的4款Infinidat阵列:
- F1000,可用容量最高115TB,3GB/s带宽和300000 IOPS
- F2000,248TB-499TB的可用容量,7GB/s带宽和500000 IOPS
- F4000,682TB-1024TB的可用容量,10GB/s带宽和750000 IOPS
- F1000,1035TB-2765RB的可用容量,12GB/s带宽和1000000 IOPS
入门级的F1000已经在今年8月推出。
Infinidat软件的3.0版本可以在不影响访问性能的情况下带内压缩数据。数据写入据称只需要180微秒。然后后端的分配器功能可以将新数据区段拿出来,放到磁盘的永久性存储中,在这里完成压缩,这样数据就可以在写入到磁盘之前完成压缩。目前采用了LV4算法,但还将有一个算法库针对不同类型的数据,这样压缩功能就会随时间推移不断改善。
客户能够以卷湖综合文件系统为单位打开或者关闭压缩功能,而且该功能是作为免费操作系统更新的一部分提供给所有Infinidat客户的,Infinidatiang保证2X的压缩率。Infinidat称,有了压缩功能,其阵列可以在标准的42U机架内扩展至超过5PB可用存储容量。
此前在2015年支持的iSCSI是第三方的软件,而且必须在机架内采用3U iSCSI节点,现在这些空间已经被回收了。MSP客户很高兴听到这个消息。IOS的V3版本采用了Infinidat自己的软件iSCSI技术,原生运行在自己的三控制器集群上。这让iSCSI成为FICON、光纤通道和NFS的第一层对等协议。
该系统仍然是7个9个可用性,非阻塞以太网,在端口/节点发生故障的情况下支持透明的故障转移。Infinidat首席技术官Brian Carmody认为,运营商级的iSCSI拥有很大的市场空间,VMware、Windows和OpenStack都支持这项技术。
我们了解到,32Gb/s光纤通道将会在2017年下半年问世。
阵列的分析功能也得到了增强,有多维度的分析,不只是基于时间顺序的功能。客户可以按照时间、IO类型以及延迟等维度进行分析。
InfiniBox性能分析截屏
在这个分析GUI中使用的每个单一数据点都是可以通过Rest API访问的,这是GUI代码后端所使用的API。
Infinidat表示,它的阵列要比全闪存阵列更快,一部分原因是Infinidat阵列采用了DRAM和闪缓存让保存在磁盘中的数据变得更快。该阵列的架构与众不同,可以采用不同类型的存储介质,介质性价比方面的变化,能够让阵列保存更多数据并且速度更快。目前,它可以支持磁盘驱动器保存最多20TB数据。Infinidat称,他们正在与硬盘厂商进行商谈,可能最多可支持到100TB的硬盘。
Infinidat v3.0将在该季度晚些时候供货,现有的客户可以获得不间断的免费软件升级。
好文章,需要你的鼓励
帕洛阿尔托创业公司Catio在VentureBeat Transform 2025大会上获得"最酷技术"奖。该公司成立于2023年,已筹集700万美元资金。Catio推出的AI技术架构副驾驶将架构重新定义为可编码、可内省和智能演进的活体系统。通过结合实时架构地图和多智能体AI组织,帮助工程团队从被动决策转向持续主动的架构优化,为CTO和架构师提供数据驱动的架构决策支持。
这项由中国移动和Zero Gravity实验室合作的研究成功突破了大模型训练的网络带宽限制,首次实现在1Gbps网络下训练1070亿参数模型,速度比传统方法快357倍。通过流水线并行、延迟重叠机制和自适应压缩算法的创新组合,为分布式AI训练开辟了新可能。
谷歌在ISTE教育技术大会上发布超过30款AI教育工具,包括专为教育打造的Gemini应用、协作视频制作工具Google Vids扩展访问权限等。教师可利用AI技术进行头脑风暴、生成教案、个性化学习内容,还能创建定制版Gemini"助手"为学生提供额外支持。新工具还包括AI阅读伙伴、学习进度追踪、Chrome设备管理等功能,旨在通过"负责任的AI"推动个性化学习体验。
这项研究介绍了MADrive系统,一种革命性的自动驾驶场景模拟技术。该系统通过一个包含7万辆真实车辆的数据库,能够将普通驾驶录像转换成各种危险场景的高逼真度模拟,为自动驾驶系统提供安全的训练环境。实验表明,相比传统方法,MADrive在多个关键性能指标上都有显著提升,为解决自动驾驶训练数据稀缺问题提供了新思路。