为了再度发挥自身的固有优势,NetApp公司已经推出一款补充性连接器产品,旨在帮助其Data ONTAP客户在无需将数据由WAFL复制到HDFS中的前提下对自有NFS数据进行Hadoop分析。
这套NFS Connector for Hadoop能够处理来自各类数据源的大数据输入内容,而后将结果与结构化数据分析相结合。从根本层面来看,这相当于将两类数据汇总成统一化视角、从而更为透彻地掌握企业或者公共事业组织的当前运作状况。
这样的方案避免了将大规模数据由FAS阵列迁移至HDFS(即Hadoop文件系统)集群所带来的麻烦与不便。
这套Hadoop集群能够以HDFS为主要运行平台,并将ONTAP作为辅助性文件系统。除此之外,该集群还能够在无需造成独立HDFS孤岛的前提下单纯运作在FAS阵列之上。
这很可能成为ONTAP用户试水Hadoop项目并体验其实际效果的绝佳途径。
这套连接器采取开源机制,并由GitHub负责托管:
• 专门针对MapReduce协作需要,从而配合Apache Hadoop框架当中的计算部分。
• 能够支持Apache HBase(属于列式数据库)。
• 能够支持Apache Spark(与Hadoop相兼容的处理引擎)。
• 能够与Tachyon内存内文件系统相协作,后者能够与Apache Hadoop与Spark并行协作。
在一篇博文当中,NetApp公司CTO办公室的Val Bercovici表示:“NetApp计划将相关代码贡献给Hadoop项目主体。”
NetApp公司还针对Cloudera制定出自己的NOSH(即面向Hadoop的NetApp开放解决方案)计划。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。