2024年伊始,OpenAI颠覆性大模型产品Sora横空出世,以强大的视频生成能力,进一步打开了AI应用想象空间,为大模型产业再次点燃一把“新火”!
从文字生成的ChatGPT,到文生视频交互的Sora,可以肯定的是,大模型正在快速从单模态向多模态演进,推动AI应用持续深化,不断释放巨大的价值潜力。未来,AI大模型参数已达到千亿级,原始数据更高达PB级,这不仅意味着算力需求将无限接近提升,同时也对数据传输与存储带来极大挑战。
全闪性能 满足AI大模型尖端存储需求
众所周知,在AI大模型的训练和推理过程中,数据质量和数量是AI应用“智能”的关键“养料”,这对存储系统的高吞吐、低延迟、高并发等特性带来极高要求,采用全闪存介质的高性能集群存储被普遍认为是AI大模型存储的最佳方案。
面对行业尖端存储需求,曙光存储重磅推出以ParaStor高性能AI数据基础设施为底座的AI大模型存储解决方案。基于全闪存储能力,可提供千亿级文件存储服务,接近无限扩展规模。
曙光存储首创的XDS技术嵌入Parabuffer加速引擎,在人工智能培训计算节点和存储系统之间构建大内存池,将系统的整体I/O性能提高数倍。存算协同优化显著降低了训练时间,可以从几十天减少到几天。
全栈自研 稳定保障全闪性能表现
除高性能外,AI大模型业务开发训练也需时刻保障稳定运行。目前,业内开源的全闪存储产品普遍稳定性较差,无法发挥出全闪存储的全部性能优势。
曙光AI大模型存储解决方案拥有全栈自研能力,支持基于部件级、节点级以及系统级和方案级四级安全可靠的机制,保证AI大模型开发过程当中全生命周期的稳定运行。
性价比之选 具备充分成本优势
在AI大模型开发之路上,成本问题也是行业从业者所面临的一大挑战。尤其伴随模型复杂度提升,数据处理、设备部署等成本需要重点考量。
为更好赋能行业发展,曙光AI大模型存储解决方案为客户提供了高性价比的存储方案,整体拥有成本更具优势。
目前,这套存储解决方案已广泛适用于互联网、金融、制造、通信、交通与医疗等关键行业的企业级AI应用开发之中,正在为多种模型开发提供专用、专业的创新升级存储服务!
好文章,需要你的鼓励
DDN推出Infinia对象存储系统,采用键值存储架构和Beta Epsilon树数据结构,实现读写性能平衡。系统在对象列表性能上比AWS快100倍,延迟降至毫秒级,支持多租户和SLA管理。通过与英伟达合作优化RAG管道,在AWS上实现22倍性能提升并降低60%成本。
大连理工大学和浙江大学研究团队提出MoR(Mixture of Reasoning)方法,通过将多种推理策略嵌入AI模型参数中,让AI能自主选择最适合的思考方式,无需人工设计专门提示词。该方法包含思维生成和数据集构建两阶段,实验显示MoR150模型性能显著提升,比基线模型提高2.2%-13.5%,为AI推理能力发展开辟新路径。
Alpine Linux核心开发者Ariadne Conill推出了Wayback项目,这是一个实验性的X兼容层,允许使用Wayland组件运行完整的X桌面环境。该项目本质上是一个提供足够Wayland功能来托管rootful Xwayland服务器的存根合成器。与现有的XWayland不同,Wayback旨在创建一个类似X11风格的基于Wayland的显示服务器,让用户能够继续使用传统的X11窗口管理器和桌面环境,而无需重写或替换这些熟悉的工具。
剑桥大学研究团队开发了FreNBRDF技术,通过引入频率修正机制显著提升了计算机材质建模的精度。该技术采用球面谐波分析提取材质频率信息,结合自动编码器架构实现高质量材质重建与编辑。实验表明,FreNBRDF在多项指标上超越现有方法,特别在频率一致性方面改善近30倍,为游戏开发、影视制作、电商预览等领域提供了重要技术支撑。