IBM公司着手发布Ceph产品更新,提供对象锁定功能以抵御勒索软件侵袭,同时带来NVMe-oF及NFS对象摄取的预览版本。
IBM Storage Ceph也就是IBM目前宣传的Red Hat Ceph,属于IBM在收购Red Hat时继承而来的大规模、可扩展、开源对象/文件/块存储软件。Ceph中的对象存储部分名为RADOS(可靠自治分布式对象存储)。Ceph对象网关也被称为RADOS网关(RGW),是构建在librados库之上的对象存储接口,负责为应用程序提供指向Ceph存储集群的RESTful网关。
前Red Hat产品经理、现供职于IBM的Marcel Hergaarden在LinkedIn上的帖子中表示,Storage Ceph v7.0现已全面上市。其中包括Cohasset对象锁定功能认证,意味着对象存储符合美国证券交易委员会(SEC)及金融行业监管局不可擦除和不可重写(FINRA WORM)要求,且满足美国商品期货委员会(CFTC)规章1.31(c)-(d)的要求。
Ceph文件系统支持NFS,也就是说客户现在可以在配置Ceph文件系统之后,在Ceph仪表板之内创建、编辑和删除NFS导出。Hergaarden表示,“可以使用NFS Ganesha服务通过NFS协议导出CephFS命名空间。Storage Ceph Linux客户端可以原生挂载CephFS,这是因为CephFS的驱动程序默认集成在Linux内核当中。借助这一新功能,非Linux客户端现在也可以通过NFS Ganesha服务通过NFS 4.1协议访问CephFS。”
RGW(RADOS网关)现在可以从仪表板以多站点模式进行设置和配置。仪表板支持对象桶级交互,提供多站点同步状态详细信息,可用于CephFS分卷的管理和监控。
他还提到,Storage Ceph通过将S3select查询推送至RADOS网关(RGW),从而为Presto和Trino应用程序带来了性能改进。v7.0还支持CSV、JSON和Parquet定义的S3select等数据格式。
此外,基于RGW策略的数据归档与公有云迁移也在受支持范畴。用户可以:“出于成本和可管理性的考量,创建策略并将符合策略标准的数据移动至与AWS相兼容的S3存储桶进行归档。”其目标可以是AWS S3或Azure Blob存储桶。RGW通过对象存储地理复制可实现更好的多站点性能。“数据复制与元数据操作性能得以提高”,再加上“通过优化和增加RadosGW守护进程数量来提高操作并行性,从而提高横向可扩展能力”,但IBM并未公布具体性能数据。
再有,通过使用C2+2纠删码池,纠删码的最小节点数已降至4个。
Ceph v7.0还迎来三项预览版新功能,目前仅作为展示,不建议在生产应用中直接使用:
首先是基于块存储的NVMe for Fabrics(NVMe-oF)。客户端与NVMe-oF启动器交互,并接入至IBM Storage Ceph NVMe-oF网关,此网关从北端启动器处接收数据并连接至南端RADOS,且性能与RBD(RADOS Block Device)使用原生块存储持平。
对象归档区,用于保存每个对象的各个版本,负责为用户提供包含对象完整历史记录的对象目录。此功能交付的是无法从RADOS网关(RGW)端点删除或修的不可变对象,并支持恢复生产站点上存在的任意对象的各个版本。这项功能主要用于抵御勒索软件和实现灾难恢复。
为了限制进入归档的内容,还可对归档区存储桶进行粒度设置,从而立足每个对象存储桶启用/禁用指向归档区的复制操作。
第三项预览功能是NFS到RADOS网关的后端,允许通过NFS将数据摄取至Ceph对象存储当中。Hergaarden总结称,“这项功能主要用于从本身不支持S3对象API的遗留应用程序中轻松提取对象数据。”
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。