自从IBM整合红帽旗下Ceph存储产品路线图已经过去了一年,如今这项技术已经在日益由AI主导的应用环境下取得进展。
Gerald Sternagl
IBM Storage Ceph技术产品经理Gerald Sternagl在日前发布的博文中表示,“这套具备自我修复与自我管理功能的平台,强调在行业标准硬件之上以规模化方式提供统一的文件、块和对象存储服务。统一存储平台将为客户提供重要的跨架构桥梁,能够将运行在独立文件或块存储上的遗留应用程序同对象存储共同囊括在同一设备之内。”
博文解释称,“在数据管理领域,软件定义存储已经成为一股变革性的力量。与传统存储阵列相比,其拥有诸多优势,包括极高的灵活性与可扩展性,特别适合处理生成式AI等现代用例。”
Sternagl对于IBM的传统存储阵列硬件(例如大型机DS8000以及x86服务器FlashSystem阵列等)持批评态度。且在被蓝色巨人收购之前,他已经作为资深专家为红帽工作了十余年。
在他看来,“Ceph针对大型单站点与多站点部署进行了优化,能够高效扩展以支持数百PB的数据和数百亿个存储对象,从而为传统及新兴生成式AI等工作负载提供至关重要的支持。”Ceph能够适应数据湖仓、AI/机器学习开源框架以及其他“较为传统的工作负载,包括红帽OpenShift以及RedHat OpenStack上的MySQL与MongoDB。”
“生成式AI已经在大量非结构化数据的基础之上迎来了蓬勃发展,并由此建立起新的反馈循环。具体来讲,AI能够不断生成真实数据以进一步丰富并完善我们对非结构化数据集的理解,持续促进技术创新与进步。”
IBM用于数据、分析及AI工作负载的数据湖仓架构watsonx.data中,就包含约768 TiB的原始Storage Ceph容量。
Sternagl还补充称,“组织……需要一种能够加快数据摄取、数据清理与分类、元数据管理与增强、以及云规模容量管理及部署速度的存储管理解决方案。而软件定义存储无疑是种重要的解决思路。”此外,新的存储方案还必须能同时支持本地和公有云环境。
他这里指的软件定义存储,自然就是Ceph。IBM肯定不会在自己的发言中推广MinIO、Cloudian、Scality、DataCore或者WekaIO等竞品。
去年12月,IBM发布了Ceph更新,提供用于勒索软件防护的对象锁定不可变功能。新版本还提供对NVMe-oF及NFS的预览版支持,用于将数据摄取至底层Ceph对象存储当中。
评论
要想将块、文件和对象存储实现全面组合,最大的问题就是如何保证各自的访问协议如何彼此对接,这可能会拖累并限制新功能(例如NVMe-oF及NFS支持)的实现。如果大家需要在单一软件包之内支持全部三种协议,那么Ceph的确是个不错的选择。但必须承认,纯块存储、块加文件存储组合、纯文件组合或者对象加文件存储组合其实可以更好地支持新功能,同时带来更高的数据访问速度。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。