请带着你的回忆看下文,想想你这些年删过的库,被删过的库。
数据库备份是个老生常谈的话题,看似很简单,但在实际操作过程中,运维人员往往会遇到这样或那样的“坑”。
数据库为什么要备份?时至今日,我认为这个问题已经不再是问题了,换个角度来看,数据库备份能规避哪些风险?
其实从数据诞生时起就伴随着丢失风险,比如,自然灾难、电力故障、网络故障、硬件故障、软件故障、人为故障等。
上面列举了一大串风险,其现实意义是,你今天躲过了硬件bug,明天避开了雷劈,后天绕开了断电,大后天还是可能会“手滑”碰到误删除。
随着DT时代的到来,企业对数据的依赖程度与日俱增,数据保护早已成为企业的一门必修课。只有拥有先知先觉的防范意识和充分的技术准备,才能“覆巢之下,亦有完卵”。
与其承受天灾人祸的担忧,为何不选择一个专业的数据库备份方案:
阿里云数据库备份DBS已经商用,作为数据库备份通道,与对象存储OSS一起构建无门槛的云数据库备份解决方案,整个配置过程只需5分钟,就可以实现秒级RPO(Recovery Point Objective恢复点目标,通俗理解是当数据库故障时,允许丢失多长时间数据,RPO越小越好)的实时备份。
1、DBS典型应用场景:
l 实时备份
当用户对数据备份要求较高时,比如需要连续实时备份,且备份过程中不影响业务运行,此时可购置阿里云数据库备份DBS服务,实现数据库的热备份,DBS可实现数据实时增量备份、精确到秒级的数据恢复能力。解决方案架构示例如下:
架构设计说明:
关键部件部署:在用户本地部署有两套数据库:生产数据库和恢复库,分别用于生产数据的存储、故障后数据恢复。
在阿里云的两个区域(例如:华南1、华北1)分别购置存储服务,例如OSS对象存储或者NAS文件存储。
购置阿里云的DBS服务,用于用户本地数据库实时热备份至云上存储。
云下生产数据备份至云上:(可通过以下两种方案中的任意一种将云下生产数据备份至云上)
用户可在本地再部署一套存储,将生产数据先备份至本地IDC的存储,再通过本地IDC存储灾备拷贝至云上存储。
用户本地的生产数据库与云上存储之间通过阿里云DBS,将生产数据库中的数据直接热备份至云上两个区域的存储中。
数据恢复:
如果用户本地IDC的生产数据库发生故障,但本地IDC的存储运行正常,可通过本地IDC的 存储将数据恢复至本地IDC的恢复库。
如果用户本地IDC的生产数据库和存储均发生故障,或没有部署本地存储,则可通过DBS将云上存储将数据恢复至本地恢复库。
架构特点:
优点:技术要求高、一致性好,恢复时间短。
缺点:RTO随着数据库是来大小而变化。
应用场景:比较成熟的备份手段,适用于大部分的关系型数据库。
除了为数据库提供连续数据保护、低成本的备份服务外,DBS还可在多种环境下提供强有力的数据保护,包括公共云、企业自建数据中心及其他云厂商。DBS具备低成本、高性能、零风险等优势,为用户提供理想的云数据库备份解决方案。
好文章,需要你的鼓励
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
OpenAI推出新AI模型GPT-5-Codex,能够在无用户协助下完成数小时的编程任务。该模型是GPT-5的改进版本,使用额外编码数据训练。测试显示,GPT-5-Codex可独立工作超过7小时,能自动发现并修复编码错误。在重构基准测试中得分51.3%,比GPT高出17%以上。模型可根据任务难度调整处理时间,简单请求处理速度显著提升。目前已在ChatGPT付费计划中提供。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。