韩国DRAM厂商与NAND制造商SK海力士公司公布其2017年第一季度实现营收增长,同时创下破纪录利润水平。
该公司本季度营收达到6.29万亿韩元,较上年同期增长72%,亦较上季度高出17%。净收入则为1.9万亿韩元,较上年同期提升惊人的324%,较上季度增幅则为17%。
另外,SK海力士公司亦借此创下破纪录利润水平。
本季度净运营利润率为30%,而营收与利润的双重增长主要受到产品价格上涨的推动
在DRAM方面,该公司的出货总量下降5%,但产品平均售价(简称ASP)则上涨了24%。由于年初库存量低而引发的供应量受限状况导致了供应紧张,最终带来总出货量下降状况。然而,PC与服务器供应商的强劲需求仍然显著提高了产品的单位售价并因此带来出色的财报表现。
在财报电话会议当中,SK海力士公司总裁兼企业支持负责人Kim Jun-Ho表示:“云计算市场开始起飞,因此市场对于服务器DRAM的需求表现出极为强劲的势头。”
尼古拉斯公司分析师兼总经理Aaron Rakers表示,PC市场的缩水趋势正得以缓和。SK海力士预计将凭借着约20%的市场需求增长而继续享受这一DRAM供应量不足带来的红利。
DRAM营收在本季度占SK海力士公司整体营收的74%。
闪存产品同样迎来了类似的出货量增幅下降与平均售价提升趋势,其销售量缩水3%,但产品平均售价则提升了15%。移动产品与固态硬盘市场需求继续保持旺盛,而供应商的库存量则与DRAM一样处于较低水平。
SK海力士公司的72层3D NAND产品
Rakers指出,该公司本季度的NAND闪存营收约为13.3亿美元,占其总体营收中的24%。他认为SSD仅占全部闪存产品营收中的16%。
Kim Jun-Ho同时表示:“市场需求旺盛主要是受到中国智能手机NAND闪存需求量增长以及个人计算机SSD使用比例的提高所推动。”
着眼于未来,SK海力士认为DRAM需求量的增长主要受到系统内DRAM容量水平提升的推动,而非系统本身数量的增长。Kim Jun-Ho指出,“今年推出的新型智能手机将越来越多地采用双摄像头与改进型AI技术,而采用LPDDR4X等速度更快的移动DRAM将能够更好地支持这些先进功能。”
在服务器方面,随着云服务规模的持续增长,数据中心的需求量亦快速提升。众多供应商正在建立自有数据中心,而这仅成为云服务市场的普遍潮流。很明显,高容量DRAM模块能够帮助相关服务器提供低延迟与高处理能力优势。
在PC领域,“高端笔记本与游戏PC亦在不断提升内置DRAM内存容量,这也将给销售额带来增长。”
总体而言:“今年市场对于DRAM的需求量增长预计将超过20%,且需求增长量将超过供应能力增长。在另一方面,厂商并无能力显著提升DRAM生产能力,而对3D NAND的迫切需求也将导致针对DRAM的投资额保持在较低水平。”
SK海力士公司表示,其将扩大2Z纳米DRAM的生产能力,并在今年下半年开始大规模生产1X纳米DRAM。不过Kin Jun-Ho强调称,“我们认为这种供应能力短缺将持续至今年年底。”
在闪存方面,“今年市场对NAND的需求量增长预计将在30%到35%之间,而需求增长可能略微超过供应量增长……我们计划向移动市场内投放36层MLC产品,并面向高存储密度移动与SSD市场投放48层与72层产品。”
SK海力士公司正在参与东芝存储器业务的投标,如果其成功,那么东芝方面的NAND生产设施及容量将帮助海力士显著提升DRAM产能水平。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。