如今,大数据革命驱动了现代工业发展,每天都有越来越多的企业采用大数据技术。然而,尽管大量数据已经存在和应用了很长时间,但如何使用它,仍然存在许多严重的错误。
以下是企业容易犯的5个主要的大数据错误,以及用户避免这些错误可以采取的措施。
1.使用大数据确认,而不是发现
大数据在用于提供以前被忽视的见解和发现时,对于人们来说是最好的。企业不仅可以更多地了解目标受众,并预测市场趋势,还可以对流程进行微调,以提高效率。然而,许多公司都有一个关于需要做什么的理论,并且将使用大数据作为一种证明的方法,同时忽略了提供反驳意见的其他见解。
相反,通过查看整个数据分析,企业可以获得准确的信息,而不仅仅是获取正面的信息。
2.依靠机器学习,而不是人类学习的问题
当企业出现大规模的问题时,往往会把大数据作为一种解决问题的方式。然而,通常大数据只能解决一方面的问题,而留下的更大问题被忽略或没有解决。在这一点上,数据科学家需要将他们的创意与大量数据结合起来,以识别并为遗留下的问题创造一个新的解决方案,直到整个问题得到解决。
企业期待大数据是一种神奇的修复工具,因此需要了解大数据只是一种工具而已,在适用于正确的问题时才能工作。第一个解决方案通常只是解决方案的第一部分。
3.将数据与业务分开
通常情况下,企业将其IT部门作为一个封闭部门,旨在通过大数据进行管理和改进。然而,为了使数据分析提供的见解真正使大企业受益,其结果需要超越改进技术系统或提升其营销工作。这些将影响他们如何做生意,以及他们的专业人员如何在各个层面上进行互动,创造,IT转型和业务转型。
在内部使用大数据可以让管理人员了解员工的互动情况,哪些部门可以进行改进,甚至可以在管理风格上加以利用。通过利用数据分析来改进基础架构本身,在其他方面都有更好的结果。
4.限制他们的数据组,影响结果
通常,面试官询问问题的方式可能会影响到最终的答案。大数据也是如此。由于数据池如此巨大,因此不可能立即筛选所有内容。这意味着查询必须发送出去,才能收集回答专家提出的问题。但是,这个过程必须精心设计,因为虽然企业可能会收到正在寻找的答案样式,但也可以禁止不同的选择,有时被视为无关的信息,有机会从整个视角看问题。
5.没有聘请最好的数据科学家
工具只是一个工具而已,除非是放在合适的人的手中。为了节省资金或加速大数据集成到企业业务中,许多人忽略了选择合适的数据科学家来管理其价值。只有具备正确资格的技术专业人员才能早日识别问题,知道正确的发送查询,以获得最准确的见解,以及在哪里集中数据,以确保其公司在合适的时间了解准确的信息。
考虑到这一点,就像企业使用大数据一样重要,更重要的是企业确保拥有合适的团队。
大数据只有通过正确的方式处理才会有用。通过从其流程中消除这5个错误,企业才可以利用大数据更好地指导工作。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。