2024年伊始,OpenAI颠覆性大模型产品Sora横空出世,以强大的视频生成能力,进一步打开了AI应用想象空间,为大模型产业再次点燃一把“新火”!
从文字生成的ChatGPT,到文生视频交互的Sora,可以肯定的是,大模型正在快速从单模态向多模态演进,推动AI应用持续深化,不断释放巨大的价值潜力。未来,AI大模型参数已达到千亿级,原始数据更高达PB级,这不仅意味着算力需求将无限接近提升,同时也对数据传输与存储带来极大挑战。
全闪性能 满足AI大模型尖端存储需求
众所周知,在AI大模型的训练和推理过程中,数据质量和数量是AI应用“智能”的关键“养料”,这对存储系统的高吞吐、低延迟、高并发等特性带来极高要求,采用全闪存介质的高性能集群存储被普遍认为是AI大模型存储的最佳方案。
面对行业尖端存储需求,曙光存储重磅推出以ParaStor高性能AI数据基础设施为底座的AI大模型存储解决方案。基于全闪存储能力,可提供千亿级文件存储服务,接近无限扩展规模。
曙光存储首创的XDS技术嵌入Parabuffer加速引擎,在人工智能培训计算节点和存储系统之间构建大内存池,将系统的整体I/O性能提高数倍。存算协同优化显著降低了训练时间,可以从几十天减少到几天。
全栈自研 稳定保障全闪性能表现
除高性能外,AI大模型业务开发训练也需时刻保障稳定运行。目前,业内开源的全闪存储产品普遍稳定性较差,无法发挥出全闪存储的全部性能优势。
曙光AI大模型存储解决方案拥有全栈自研能力,支持基于部件级、节点级以及系统级和方案级四级安全可靠的机制,保证AI大模型开发过程当中全生命周期的稳定运行。
性价比之选 具备充分成本优势
在AI大模型开发之路上,成本问题也是行业从业者所面临的一大挑战。尤其伴随模型复杂度提升,数据处理、设备部署等成本需要重点考量。
为更好赋能行业发展,曙光AI大模型存储解决方案为客户提供了高性价比的存储方案,整体拥有成本更具优势。
目前,这套存储解决方案已广泛适用于互联网、金融、制造、通信、交通与医疗等关键行业的企业级AI应用开发之中,正在为多种模型开发提供专用、专业的创新升级存储服务!
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。