但截至目前,将存储与计算相融合的技术尚未大范围流行。
NVM Express联盟日前更新规范,希望引入计算存储功能以建立新的标准化方式,在应用程序与包含特定处理功能的存储设备之间建立通信机制。
NVM Express(下文简称「该组织」)负责监督通过主机PCIe总线使用固态硬盘(SSD)的NVMe规范,而新加入的计算存储功能将进一步扩展规范以支持NVMe计算存储设备。
此番支持涵盖两套新的NVMe命令集:其一用于计算程序,其二用于子系统本地内存命令。两套命令集现在均可从NVM Express官方网站处下载。
其中计算程序命令集将使NVMe设备能够对NVM子系统中的数据执行操作,使用各项命令管理设备上的计算活动。
另一方面,子系统本地内存命令则允许通过NVMe I/O命令访问NVM子系统中的本地内存,可通过各项命令实现用户数据读取/写入以及将用户数据复制到设备本地内存等操作。
计算存储技术的核心,在于将计算与存储紧密耦合的新型架构。这种架构的优势,主要在于将处理能力嵌入至SSD等存储设备以减少数据移动需求。如此一来,数据库和AI处理等延迟关键型应用的响应速度将显著提升。
NVMe计算存储任务组联席主席Bill Martin在回应采访的声明中表示,“NVM Express计算存储是我们向企业和超大规模数据中心伸出援手,满足存储行业不断变化的现实需求的重要举措。”Martin本人还担任三星电子负责SSD IO标准的首席工程师。
“计算存储是一种标准化方法,将建立起开放且可互操作的生态系统。通过将计算任务移交至存储设备,我们预计相关行业的总体拥有成本将有所降低、整体性能也将随之提升。”
三星是目前制造计算存储驱动器(产品名称为SmartSSD)的参与厂商之一。
在与英特尔存储软件架构师Kim Malone共同撰写的博文中,Martin解释了数据集规模的增加如何在网络带宽用量、主机内存和CPU利用率等层面引发性能瓶颈。而计算存储技术又如何经由NVMe设备将部分数据处理任务从主机上转移出来,有效解决这个问题。
博文指出,“通过减少计算过程中所需的数据传输量,系统能够为关键数据应用提供更快的响应速度。”
“此外,通过将计算任务转移至NVMe设备,计算存储技术还有助于释放整个系统的架构利用率,降低数据中心环境的总体拥有成本。”
但根据技术媒体Blocks & Files最近的报道,计算存储技术截至目前并未得到市场的广泛接纳。而其中一大原因,就是与系统主机处理器(通常是FPGA或者少量Arm核心)相比,存储设备中嵌入的计算容量太过孱弱。
计算存储SSD的典型应用,往往侧重于承担压缩/解压缩、纠删码以及加速数据库等场景下的键值操作。
目前还不清楚新的NVM Express规范能否或者如何与存储网络行业协会(SNIA)定义的计算存储架构与编程模型相兼容。
不到一年之前,SNIA刚刚发布上述规范的1.0版本。文件定义了相关概念,旨在为应用程序提供通用编程模型,用以发现并使用附加至计算机系统的一切计算存储资源。
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。