但截至目前,将存储与计算相融合的技术尚未大范围流行。
NVM Express联盟日前更新规范,希望引入计算存储功能以建立新的标准化方式,在应用程序与包含特定处理功能的存储设备之间建立通信机制。
NVM Express(下文简称「该组织」)负责监督通过主机PCIe总线使用固态硬盘(SSD)的NVMe规范,而新加入的计算存储功能将进一步扩展规范以支持NVMe计算存储设备。
此番支持涵盖两套新的NVMe命令集:其一用于计算程序,其二用于子系统本地内存命令。两套命令集现在均可从NVM Express官方网站处下载。
其中计算程序命令集将使NVMe设备能够对NVM子系统中的数据执行操作,使用各项命令管理设备上的计算活动。
另一方面,子系统本地内存命令则允许通过NVMe I/O命令访问NVM子系统中的本地内存,可通过各项命令实现用户数据读取/写入以及将用户数据复制到设备本地内存等操作。
计算存储技术的核心,在于将计算与存储紧密耦合的新型架构。这种架构的优势,主要在于将处理能力嵌入至SSD等存储设备以减少数据移动需求。如此一来,数据库和AI处理等延迟关键型应用的响应速度将显著提升。
NVMe计算存储任务组联席主席Bill Martin在回应采访的声明中表示,“NVM Express计算存储是我们向企业和超大规模数据中心伸出援手,满足存储行业不断变化的现实需求的重要举措。”Martin本人还担任三星电子负责SSD IO标准的首席工程师。
“计算存储是一种标准化方法,将建立起开放且可互操作的生态系统。通过将计算任务移交至存储设备,我们预计相关行业的总体拥有成本将有所降低、整体性能也将随之提升。”
三星是目前制造计算存储驱动器(产品名称为SmartSSD)的参与厂商之一。
在与英特尔存储软件架构师Kim Malone共同撰写的博文中,Martin解释了数据集规模的增加如何在网络带宽用量、主机内存和CPU利用率等层面引发性能瓶颈。而计算存储技术又如何经由NVMe设备将部分数据处理任务从主机上转移出来,有效解决这个问题。
博文指出,“通过减少计算过程中所需的数据传输量,系统能够为关键数据应用提供更快的响应速度。”
“此外,通过将计算任务转移至NVMe设备,计算存储技术还有助于释放整个系统的架构利用率,降低数据中心环境的总体拥有成本。”
但根据技术媒体Blocks & Files最近的报道,计算存储技术截至目前并未得到市场的广泛接纳。而其中一大原因,就是与系统主机处理器(通常是FPGA或者少量Arm核心)相比,存储设备中嵌入的计算容量太过孱弱。
计算存储SSD的典型应用,往往侧重于承担压缩/解压缩、纠删码以及加速数据库等场景下的键值操作。
目前还不清楚新的NVM Express规范能否或者如何与存储网络行业协会(SNIA)定义的计算存储架构与编程模型相兼容。
不到一年之前,SNIA刚刚发布上述规范的1.0版本。文件定义了相关概念,旨在为应用程序提供通用编程模型,用以发现并使用附加至计算机系统的一切计算存储资源。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。