西部数据公司已经开始利用速度更快的NVMe驱动器逐步替代其SATA与SAS SSD产品。
2.5英寸Ultrastar DC SN630与M.2 2280(单面)格式CL SN720驱动器开始采用西部数据与东芝的64层3D TLC NAND (三级单元)配置,同时配合PCIe v3四通道与NVMe v1.3接口。
西数方面表示,全部驱动器组件皆已生产到位,具体包括介质、控制器及其软件。
这款DC SN630是一款数据中心级SSD,其960 GB、1.92 TB、3.84 TB以及7.68 TB几种容量版本针对读取密集型任务进行了优化。而出于预留空间的考虑,其混合使用版本的容量水平较低,分别为800 GB、1.6 TB、3.2 TB以及6.4 TB。
西数公司的Ultrastar DC SN630
西数方面并没有公布混合版本产品的随机读取/写入IOPS,但向我们确认其使用寿命为每天两次全盘写入,寿命周期大约为五年。另外,其提供五年质保服务,以及最高200万小时故障间隔时间(简称MTBF)。
读取密集型版本则可带来高达36万3700/5万5820的随机读取/写入IOPS,且具有2.7/1.29 GB每秒的连续读取/写入带宽。
奇怪的是,从960 GB到7.68 TB,西部公司甚至为不同容量型号列出了非常详尽的延迟水平——130微秒、180微秒、230微秒以及230微秒。另外,读取密集型产品的使用寿命略低,为每天0.8次全盘写入,同时提供为期五年的质保以及高达200万小时的故障间隔时间。
其常规功耗为10.75瓦,且具备即时安全擦除功能。
相比之下,西数的HGST品牌同样包含一款DC SS530双端口SAS驱动器,其同样采用64层TLC 3D NAND并具备每秒12 Gbit带宽。其随机读取/写入IOPS最高可达44万/32万,这样的表现在写入操作方面可谓碾压DC SN630。
另外,DC SS530的连续读取/写入带宽分别为2.31/2.28 GB每秒,同样优于SN630。在这种情况下,可以看出NVMe本身并没有表现出超越每秒12 Gbit双端口SAS的性能水平。
我们于去年三月首次见证西数公司推出的SN720 M.2 NVMe驱动器,但当时其还没有发布关于CL SN720的公告。
CL SN720驱动器主要作为启动引导或者物联网边缘驱动器使用。其提供256 GB、512 GB、1 TB以及2 TB容量选项。这款产品的随机读取/写入IOPS呈现出两极分化,读取为3万3000,而后者仅为可怜的2700——是的,我们检查了多次数据表,确认结果无误。很明显,其专为大规模读取密集型任务而生。
西部数据公司的Ultrastar CL SN720
其连续读取/写入带宽仍然倾向于读取,但差异有所缩小,分别为3.25/1.4 GB每秒。
读取延迟为128微秒,西数方面表示这款驱动器的读取速度与写入性能分别可达1 TB Ulstrastar SA210 SATA SSD的6倍与2.5倍。
其同样基于64层TLC 3D NAND,采用6 Gbit每秒SATA接口,并提供2.5英寸与M.2 2280两种格式。其随机读取/写入IOPS为6万4000/5000,连续读取/写入带宽为510/475 MB每秒;可以看到,性能指标明显低于使用NVMe的CL SN720版本。
我们也可以将CL SN720与西部刚刚面向游戏玩家发售的闪存驱动器进行比较,即Black SN750。后者拥有一套覆盖64层TLC 3D NAND介质的散热器,可提供51万5000/48万随机读取/写入IOPS以及3.47/3.9 GB每秒连续读取/写入带宽;很明显,不仅速度更快而且读写更加均衡。
西数方面也在着手构建并配置各驱动器产品,从而在性能、成本、功耗以及使用寿命等层面达到与市场需求的高度契合。
SN720提供自加密支持——即TCG OPAL 2.01——以及即时安全擦除。另外,这两款新驱动器都可使用密度更高的96层3D NAND。
SN630计划于今年三月上市,而SN720目前已经开始供货。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。