在美光第二代HBM3芯片亮相一个月后, SK海力士正在对一款HBM3E芯片进行采样。
HBM3E是第3代高带宽存储器扩展版,遵循2022年1月推出的HBM3标准。这种存储器是由放置在逻辑模具上方的DIMM芯片堆集构建的,并通过中介器连接到GPU或CPU上。或者,存储芯片可以直接堆叠在GPU上。无论哪种方式,DRAM到GPU/CPU的带宽都高于通过插槽连接到处理器的DRAM的传统X86架构。行业机构JEDEC规定了HBM标准,其HBM3标准于1月发布。现在,在人工智能和机器学习热潮的推动下,供应商们正急于让它过时。
过去一段时间存储市场需求低迷,存储器和NAND供应过剩,如今存储器市场开始出现一些复苏迹象。SK海力士DRAM产品规划主管Sungsoo Ryu表示:“通过增加高价值HBM产品的供应份额,SK海力士也将寻求快速的业务转型。”
HBM世代表。
该公司自称是世界上唯一的HBM3产品“大规模生产商”之一,并计划从明年上半年开始批量生产HBM3E。SK海力士谈到了其为人工智能市场生产的内存,目前由于对ChatGPT型大型语言模型(LLM)的需求而大幅扩大。SK认为LLM处理是内存有限的,并旨在纠正这一点。
SK海力士产品的细节很少,该公司只表示每秒可处理高达1.15 TB的数据,相当于每秒处理230多部5GB大小的全高清电影。美光上个月宣布了一款超过1.2TBps的HBM3第二代产品,这表明SK海力士还有工作要做。
美光的HBM3第2代产品采用8层堆叠,容量为24GB,即将推出36GB容量的12层堆叠版本。SK海力士于4月宣布推出12层堆栈HBM3产品,容量为24GB。
我们怀疑SK海力士的HBM3E产品可能是基于这款容量为24GB的12层堆叠产品开发的,并且可能实现36GB的容量。
SK海力士表示,HMB3E产品与HBM3向下兼容;只要把它放在现有的设计中,系统即可更快运行。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。