HBM即高带宽存储,由多层DRAM Die垂直堆叠,每层Die通过TSV穿透硅通孔技术实现与逻辑Die连接,使得8层、12层Die封装于小体积空间中,从而实现小尺寸于高带宽、高传输速度的兼容,成为高性能AI服务器GPU显存的主流解决方案。
目前迭代至HBM3的扩展版本HBM3E,提供高达8Gbps的传输速度和16GB内存,由SK海力士率先发布,将于2024年量。
HBM主要应用场景为AI服务器,最新一代HBM3e搭载于英伟达2023年发布的H200。根据Trendforce数据,2022年AI服务器出货量86万台,预计2026年AI服务器出货量将超过200万台,年复合增速29%。
AI服务器出货量增长催化HBM需求爆发,且伴随服务器平均HBM容量增加,经测算,预期25年市场规模约150亿美元,增速超过50%。
HBM供给厂商主要聚集在SK海力士、三星、美光三大存储原厂,根据Trendforce数据,2023年SK海力士市占率预计为53%,三星市占率38%、美光市占率9%。HBM在工艺上的变化主要在CoWoS和TSV。
HBM1最早于2014年由AMD与SK海力士共同推出,作为GDDR竞品,为4层die堆叠,提供128GB/s带宽,4GB内存,显著优于同期GDDR5。
HBM因其高带宽、低功耗、小体积等特性,广泛应用于AI服务器场景中。HBM的应用主要集中在高性能服务器,最早落地于2016年的NVP100GPU(HBM2)中,后于2017年应用在V100(HBM2)、于2020年应用在A100(HBM2)、于2022年应用在H100(HBM2e/HBM3),最新一代HBM3e搭载于英伟达2023年发布的H200,为服务器提供更快速度及更高容量。
HBM供给厂商主要聚集在SK海力士、三星、美光三大厂,SK海力士领跑。三大存储原厂主要承担DRAMDie的生产及堆叠,展开技术升级竞赛,其中SK海力士与AMD合作发布全球首款HBM,23年率先供应新一代HBM3E,先发奠定市场地位,主要供应英伟达,三星供应其他云端厂商,根据TrendForce数据,2022年SK海力士市占率50%、三星市占率40%、美光市占率10%左右,2023年SK海力士市占率预计为53%,三星市占率38%、美光市占率9%。
HBM在封装工艺上的变化主要在CoWoS和TSV。
1)CoWoS:是将DRAMDie一同放在硅中介层上,通过过ChiponWafer(CoW)的封装制程连接至底层基板上,即将芯片通过ChiponWafer(CoW)的封装制程连接至硅晶圆,再把CoW芯片与基板连接,整合成CoWoS。当前,HBM与GPU集成的主流解决方案为台积电的CoWoS,通过缩短互连长度实现更高速的数据传输,已广泛应用于A100、GH200等算力芯片中。
2)TSV:TSV硅通孔是实现容量和带宽扩展的核心,通过在整个硅晶圆厚度上打孔,在芯片正面和背面之间形成数千个垂直互连。在HBM中多层DRAMdie堆叠,通过硅通孔和焊接凸点连接,且只有最底部的die能向外连接到存储控制器,其余管芯则通过内部TSV实现互连。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。