数据中心软件和服务厂商Nutanix今天发布第一季度财报,结果超出了预期水平,且给出了强有力的下一季度指引,这也使得Nutanix股价在盘后交易中有所上涨。
该季度,Nutanix在不计入诸如股票薪酬等特定成本的情况下每股亏损44美分,收入为3.128亿美元,此前华尔街预期的每股亏损为57美分,收入为2.9934亿美元。
Nutanix还称,该季度的订阅计费为2.94亿美元,订阅收入为2.78亿美元,订阅收入可能是比产品销售更为稳定一些的。
Nutanix表示,年度合同价值账单(ACV)费用达到了1.378亿美元,比去年同期增长10%,这项计费也是Nutanix最近越来越重视的一项关键指标,主要是指“合同的年度总价值,不包括与专业服务和硬件有关的金额”。
Nutanix预计第二季度ACV收入将在1.45亿美元至1.48亿美元之间,远远超出华尔街预期的1.344亿美元。
投资者对这一结果很满意,Nutanix股价在盘后交易中上涨了7%多。
“我们对第一季度的财报表现感到满意,这标志着2021财年有一个非常强劲的开端,这个季度新产品不断普及,我们核心的超融合基础设施软件持续增长,”Nutanix联合创始人、首席执行官Dheeraj Pandey在声明中这样表示。
Nutanix首席财务官Duston Williams称,Nutanix以ACV为先的战略以及扎实的上市执行力,有助于Nutanix在所有关键财务指标上取得超乎预期的成绩。
他说:“展望未来,我们将继续谨慎地管理运营费用,继续执行业务模式转型,我们有信心Nutanix可以实现长期增长,让所有利益相关者从中受益。”
该季度Nutanix在产品方面有一些重要的进展。最早Nutanix的定位是虚拟桌面基础设施厂商,近年来更加专注于扩展自己的软件定义超融合基础设施堆栈,这种堆栈集成了计算、存储和网络等组件。今年9月,Nutanix宣布与微软达成重要的合作伙伴关系,有些类似于8月和AWS的合作,是在微软Azure上开发Nutanix的超融合基础设施系统。
Pandey说:“我们在8月发布了在AWS云上的解决方案之后,宣布与微软建立重要合作伙伴关系,在Azure上开发我们的产品组合,从而使Nutanix超融合基础设施系统拥有显着的竞争优势,帮助客户构建混合云和多云环境。”
Moor Insights&Strategy分析师Steve McDowell表示,Nutanix表现强劲的第一季度说明Nutanix向基于订阅的业务模式的转型,终于获得了回报。
McDowell说:“Nutanix在执行订阅驱动的策略方面可以说几乎是完美的,再加上他们有不错的产品组合,和AWS及微软Azure的合作也开始看到回报,我们可以看到的几乎所有指标都在朝着正确的方向发展着。”
他认为,今年的疫情也让Nutanix在一定程度上有所受益。他强调,采用超融合基础设施和软件定义技术的企业组织似乎比其他企业组织能够更好地应对疫情带来的挑战,这主要因为这种系统可以支持快速重新配置和远程管理。
他说:“Nutanix的软件定义方法与订阅模型相结合,在未来12到18个月内持续经济不确定性的情况下是非常有意义的,Nutanix为企业提供了运营灵活性和预算控制力。”
Constellation Research分析师Holger Mueller补充说,Nutanix在削减销售和营销费用方面也做得很好。
他说:“这是运营改进的关键来源。现在Nutanix需要继续保持下去,努力实现增长,确保在更多平台上构建创新的产品,特别是从与微软Azure新建立的合作伙伴关系开始。”
Pandey三个月前宣布,计划找到继任者后就退休,但是目前Nutanix没有提供任何最新的消息。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。