HPE和DataDirect Networks(DDN)正在合作将DDN存储以及突发缓冲产品与HPE的Apollo服务器以及DMF工作流管理器进行整合。
这一合作的结果将是打造一款集成的HPE服务器存储产品组合,双方都将获益。
这次合作涉及的DDN产品包括IME闪存缓存/NVMe驱动器突发缓冲器,带有英特尔Lustre软件的EXAscaler阵列,以及支持IBM并行文件系统Spectrum Scale(也就是GPFS)的GRIDscaler阵列。
HPE的Apollo服务器包含大量ProLiant Gen 9服务器刀片,其中一些是水冷的。目前HPE与横向扩展文件存储软件提供商例如Qumulo和WekaIO都有合作关系。
DMF是Data Management Framework的缩写,提供工作流、数据管理、保护和灾难恢复功能。我们可以设想一个DMF覆盖了集成增强型EXAscaler的Apollo服务器和前端是IME缓冲引擎的GRIDscaler阵列。
HPE和DDN表示:“这次合作的重点是加速和简化客户在技术计算、人工智能和机器学习环境中的工作流。”
评论
客户引言中提到了实现数据吞吐量和数据保护的最大化。我们可以看到关于数据吞吐量的信息,但没有看到数据保护。DDN可能会建议使用他们的WOS对象存储系统作为备份目标,但这并没有包含在这次合作中。既没有提到任何备份软件产品,也没有提到备份至公有云层中。
我们就这个问题询问了DDN和HPE,DDN市场总监Kurt Kuckein回答说:“这次我们谈到的是更广泛的条款,而没有细化到备份和恢复。”
“一般来说,这覆盖了工作流和硬件故障——包括端到端地测试解决方案(在DDN和HPE之间进行联合测试),以及DDN SFA功能来保持在线,并在执行及时重建的时候以降级模式提供全面的性能。”
好文章,需要你的鼓励
Xbench是知名投资机构红杉中国推出一款全新的AI基准测试工具,旨在真实地反映AI的客观能力,其在评估和推动AI系统提升能力上限与技术边界的同时,会重点量化AI系统在真实场景的效用价值,并采用长青评估的机制,去捕捉AI产品的关键突破。
这项研究首次将在线强化学习成功应用于流匹配模型,通过巧妙的ODE到SDE转换和去噪减少策略,显著提升了AI图像生成的精确度和可控性。在复合场景生成、文字渲染等任务上取得突破性进展,为AI生成领域开辟了新的技术路径。
Atlassian总裁Anu Bharadwaj在Transform 2025大会上分享了公司AI智能体规模化的实践经验。她强调,成功部署AI智能体需要营造实验文化,而非仅依靠自上而下的指令。Atlassian通过Rovo Studio平台为各团队提供了构建定制化智能体的环境,创造心理安全的工作氛围,鼓励员工大胆尝试和迭代。公司客户通过该平台显著提升了工作效率,建筑行业客户将路线图创建时间缩短75%。
这篇由阿里巴巴集团联合多所知名高校发表的综述论文,系统梳理了统一多模态理解与生成模型的最新发展。研究将现有模型分为扩散、自回归和混合三大类型,详细分析了不同图像编码策略的特点,整理了相关数据集和评估基准,并深入探讨了当前面临的技术挑战。