难以置信,希捷正在把自己的ClusterStor HPC阵列产品线出售给Cray。
ClusterStor L300
这周早些时候,我们还将希捷的磁盘阵列业务(ClusterStor和Dot Hill)叫“玩具”时,我们竟想不到希捷将至少出售ClusterStor及产品线给超级计算厂商Cray公司。
Cray将可以把自己的Sonexion阵列基于该产品之上。现在Cray尚未公开的对ClusterStor产品线的收购金额和条款:
希捷和Cray将围绕在未来的ClusterStor产品中使用希捷技术进行合作。
Cray总裁、首席执行官Peter Ungaro表示:“基于我们的长期战略和惊人的数据增长,存储在我们的市场中变得越来越重要。随着百万兆计算的推进,以及人工智能、深度学习和分析的爆炸式增长,把计算和存储集成到超级计算系统中的能力正在变得比以往更为重要。”
“将希捷的ClusterStor产品线增加到我们的DataWrap和Sonexion存储产品中,这将让我们能够为客户提供更加完整的解决方案。”
希捷存储系统副总裁、总经理Ken Claffey表示:“2012年Cray成为我们的首个OEM合作伙伴,这个合作关系持续多年,已经成为我们最大的、最有战略意义的ClusterStor合作伙伴。今天的公布是对双方在HPC领域持续的、独有的合作的完美演变。作为超级计算市场中的领导者,Cray将是ClusterStor业务、员工、客户和合作伙伴的非常好的归属。”
Cray预计这次交易的影响将在2018年的盈亏平衡范围内,预计交易将在第三季度末完成。
分析
希捷在2013年12月以3.74亿美元收购Xyratex驱动器阵列和磁盘驱动器测试业务。Cray当时已经是Xyratex ClusterStor HPC存储机架的客户。
后来希捷开发了新的阵列,并在2014年11月设立了一个云系统及解决方案部门“在我们领先的磁盘驱动器业务之上,为OEM和DIY群体提供云系统和解决方案”。此外,希捷还新增了一个Hadoop连接器,希望在大数据分析领域让ClusterStor占有一席之地。
希捷的想法是从磁盘驱动器垂直向上集成,并且把驱动器阵列作为组件售卖给HPE和NetApp等使用ClusterStor和2015年8月收购的Dot Hill OEM驱动器阵列业务的存储阵列提供商。这耗资6.94亿美元,意味着希捷花费了超过10亿美元打造磁盘驱动器阵列业务。
2015年1月,希捷公司首席执行官Steve Luczo提及ClusterStor时表示:“我认为今年这项业务将达到10亿美元规模。”
希捷在2015年1月赢得HP作为ClusterStor的净销售。SGI成为ClusterStor OEM合作伙伴。IBM的Spectrum Scale并行文件系统软件也被添加到ClusterStor中。
但是希捷的想法遇到了收入下滑的打击,Xyratex位于英国Havant的工厂于2016年7月关闭。
现在,Steve Luczo也卸任成为执行主席,COO Dave Mosley成为CEO,并宣布裁员600人。
卖掉ClusterStor可能意味着希捷将结束向上的垂直集成。Dot Hill业务的未来现在可能也是个未知数。希捷转型得突然,但这仅仅是为了应对短期压力,还是计划着重启增长的引擎?
Mosley在希捷担任高管多年,现在接替了将去担任执行主席的Luczo。他是否能够扭转局势让希捷再次向前迈进?
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。