全闪存阵列现在已经成为保存高速访问主数据的热门选择,但是还没有被用于保存二级数据(例如非结构化数据)、普通文件以及灾难恢复数据。但是变化正在发现,受到更便宜的闪存驱动器的推动,高速访问二级数据显然要好于慢速访问。
产品有很多:
- WD SanDisk InfiniFlash,合作伙伴包括:
- CloudByte
- Nexenta
- Tegile IntelliFlash
- Red Hat
- Toshiba Flash Matrix
- Pure Storage FlashBlade
- 即将推出的Isilon全闪存阵列
- Dell EMC DSSD D5 array
闪存技术日益发展,成本越来越低——特别是3D NAND分层数从48个增加到64个,路线图上还有72个(SK Hynix)一直到96或者128层。我们开始听到更多关于QLC(4bit/cell),这是向TLC(3bit/cell)闪存增加了第三个容量空间。
现在我们也开始听说已经有客户在使用这种技术,显示了这种基于闪存的二级数据闪存在发展中。最近我们还听到了Pure Storage FlashBlade击败了NetApp,现在我们还听说了另一个消息。
一家名为Peak 10的云服务提供商将在基于WD SanDisk InfiniFlash硬件和NexentaStor软件的云服务上提供灾难恢复服务。私人公司Peak 10在美国有16个数据中心,有超过2600家客户。它为一系列工作负载提供Recovery Coud,有针对托管客户的DRaaS,这些客户使用Peak 10生产工作负载,此外也针对其他用户。
Peak 10需要升级它的硬件和软件,并且采用了运行超过2.5PB的InfiniFlash硬件,运行NexentaStor软件。
据称,其数据访问延迟现在是1-2毫秒,高于此前基于磁盘的存储,后者延迟是5-20毫秒。它还将所需的机架空间从100U缩小到7U,电力需求降低75%。
Peak 10公司云基础设施总监Chad Buzzard在声明中表示:“我们的很多客户会定期做灾难恢复测试,取决于客户到底测试的是什么,他们对磁盘性能的担忧会越来越多。自从切换到基于闪存的软件定义存储,延迟更低而吞吐量更高了,这些担忧基本上也都消除了。”
IDC研究总监Eric Burgener谈到了二级存储,他在声明中说:“全闪存阵列显然是主存储的未来,像InfiniFlash这样的产品——当运行在像NexentaStor这样的企业级统一存储软件平台上——正在将闪存的好处带给更多的工作负载类型,例如灾难恢复,这些工作负载通常被认为是应该采用二级存储。”
这里的关键点是,低成本的闪存和存储软件让全闪存配置的二级存储成为可行的,特别是当高速访问二级数据很重要的时候。Nexenta公司首席执行官兼总裁Tarkan Maner强调这一点:“全闪存软件定义存储正在打破存储经济的壁垒,让我们的客户可以将闪存带入那些以前他们从未考虑过的工作负载。”
预计2017年我们将会看到越来越多的客户采购全闪存配置的二级存储,这也将让更多厂商进入到这个市场,直接进入或者通过与WD的OEM合作。
我们可以注意到以下全闪存阵列厂商到目前为止都还没有合适的产品:
- Dell EMC,除了高端DSSD D5——但是据说马上会推出全闪存版的Isilon系统
- Fujitsu
- HDS
- HPE
- IBM
- Kaminario
- NetApp
- Nimble Storage
- Tintri
而且这还不是完整的列表。
闪存用于高速数据,磁盘用于慢速大容量数据,这就像是拿精英与糟粕对比。但是现在这个情况正在发生改变。
全闪存二级存储的潜在市场是巨大的,而且一旦大容量的64层3D NAND驱动器就绪,并且经济实惠,那么我们可能会看到大量产品涌入市场。不过闪存在二级存储中取代磁盘,恐怕还需要几十年的时间。
最后一点想法:对象存储一直被视为慢速、基于使用磁盘存储的节点。假设对象存储最后变成了使用闪存的节点……
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。