闪存驱动器领域也要有我们身影存在,希捷公司在本届闪存记忆体峰会上凭借着两台全新SSD产品强调了这一信息--其中一款为8 TB NVMe驱动器,另一款SSD则为3.5英寸且拥有可怕的60 TB容量。
这款60 TB产品的出炉意味着大家能够将超过1000块美光3D NAND晶粒塞进一款全尺寸3.5英寸磁盘当中。根据我们掌握的情况,此款产品配备双12 Gbit每秒SAS接口与15万随机读取IOPS,不过其写入IOPS尚未披露。其连续读取/写入参数分别为每秒1.5 GB与1.0 GB。
这款驱动器配备单一控制器,而且我们目前还不清楚其具体使用寿命。这似乎是一款主动程度不高的(即读取较多/很少写入)归档SSD,或者可用于承载那些读取密集且对延迟较为敏感的高容量需求应用。可怕的是,仅仅是17块这样的驱动器即可为大家提供接近1 PB存储容量。
60 TB存储容量相当于三星15 TB 3D NAND SSD的四倍水平,这让希捷方面在竞争中占尽主动权。三星SSD采用512块256 Gb 48层V-NAND芯片,分16层堆叠在驱动器当中。
美光公司于今年6月公布的1100产品为其第一款3D NAND M.2驱动器,采用384 Gbit晶片。在计算之后,我们发现需要1250块这样的晶片才能构建起一款60 TB驱动器。
希捷公司的60 TB方案也相当于其10 TB 3.5英寸磁盘驱动器容量的六倍。我们还不清楚其使用成本相当于该磁盘产品的多少倍,不过对这款60 TB SSD与10 TB磁盘驱动器进行每GB成本比较显然非常令人期待。
希捷公司指出,我们将在未来迎来容量高达100 TB的更多SSD产品。目前希捷尚未为该产品进行确切定名。不过惠普企业业务公司先进技术与大数据副总裁Mike Vildibill在一份友情声明当中表示:"希捷的全新60 TB SAS SSD产品能够为客户提供更高的服务器存储性能,并在容量配置层面带来前所未有且令人兴奋的可能性。"看起来惠普企业业务公司似乎已经签订了使用该产品的协议。
XP7200的速度定位则要高得多。其拥有94万与16万随机读取与写入IOPS,而连续读取与写入数据速率则凭借着自身16通道PCIe第三代接口达到每秒10 GB与每秒3.6 GB。其采用全高度PCIe尺寸并拥有四块容量优化型Nytro MX1440 M.2 SSD,且每块驱动器皆配合自己的控制器。这款存储卡能够接入单一16通道第三代PCIe插槽,大家需要使用全部通道并配合每驱动器/控制器同样运作以实现其全部性能。
Nytro XP7200分解图,上方为其散热片组件。
其提供的可用容量选项分别为3.8 TB与7.7 TB,我们认为其使用的是MLC闪存而非3D NAND。
希捷公司曾于今年3月在开放计算项目峰会上展示了一款每秒10 GB NVMe第三代PCIE x16产品。当时,我们曾在评论中表示:"我们预计新的存储卡将利用美光芯片,同时继续延续Nytro品牌。"看来这一预测是完全正确的。
XP7200 的适用方向包括高性能计算、向外扩展数据库以及科学研究与天气建模等大数据分析。Accelstor公司似乎正在利用XP7200进行产品设计。
Nytro XP7200卡
希捷公司指出,8 TB Nytro XP7200 NVMe SSD将于今年年底向各销售渠道合作伙伴发货。而60 TB SAS SSD产品则预计于2017年年内推出。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。