Amazon Web Services已经正式宣布,其将乐于将最高容量达50TB的云数据以快递方式交付至用户家门口。
这些数据将被打包为所谓Snowbal,即该公司去年刚刚发布的50TB存储阵列,并借此实现数据面向云存储服务的导入操作。
Amazon公司之所以启动Snowball计划,是因为众多潜在用户虽然对云存储抱有兴趣,但却不愿承受由大规模数据上传带来的时间消耗、传输带宽成本以及AWS自身数据迁移费用。Snowball阵列提供一个以太网接口,AWS利用它作为载体帮助大家将全部数据分拨转移到Amazon的低成本基础设施当中。该设备会对数据进行加密,因此一旦Snowball从卡车上掉出并落入恶意人士手中,用户的数据也仍然安全无忧。
AWS目前已经对这一过程做出了调整:如果大家将数据保存在其S3云存储服务当中,亦可以将其下载至Snowball当中并以快递方式进行收取。同样的,速度与成本正是这项服务的卖点所在。
Amazon还将其多年货运服务积累下来的经验应用于其中。由于Snowball会被帖上返还地址标签,因此一旦内部上传工作完成,大家可以轻松将其寄回来源地。不过那些对恢复时间要求较高的客户可能并不适合这种作法:Amazon公司的默认选项为两天寄到,而且该公司并没有告知在寄出之前还需要多长的准备时间。
更多负面因素:每次Snowball使用申请要价200美元,将数据转移至AWS之外会带来每GB 0.03美元成本(如果需要,将数据由Glacier转移至S3同样需要付费),而且AWS假定大家需要将Snowball设备保留十天。在此之后,每天额外收费15美元。再有,返还的邮费也要求由用户承担。
谁说云服务就一定轻松便宜?
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。