长久以来,很多存储客户都会遇到一个问题,即我的业务对存储设备性能需求是多少?
对于存储客户来说,他们非常想知道自己的业务需求情况,好根据业务需求进行购买存储设备,但是这一想法却是很不现实的。
存储设备
如今,很难有一种计算方式能够计算出你的业务对存储设备的性能需求。一个事务对应多少个IO?很难计算出来。
那么存储厂商如何为客户提供恰当的存储设备以满足用户需求呢?
实测+估算是唯一可行的,但同样这种方式也不是很准。
实测,主要是测试存储设备的性能,估算则是厂商根据以往的业务需求,大体估算出这个业务需要多少设备能够满足业务需求。
简单来说,一般初次购买的首台机器基本都不是特合适的,要不就是白买,要不就是性能过剩。
当然,现在存储设备厂商为了能够保证客户业务运行,同时实现利益最大化,基本上买的存储设备一定是性能过剩的。
可以说小到一台服务器,大到一个国家,准确的事先规划代价极大,而且极不靠谱。大多是通过估算来满足需求的。
但是很多人可能就要说了,那么这不就造成了资源的浪费了吗?
其实,随着业务的发展,你会发现,你的存储设备即使前期过剩,但是在两三年后,你会发现你的存储设备基本已经很难满足业务需求了。所以前期的一些过剩并不是造成太大的损失。
那么,有人会问,是否有一种方式能够根据需求来不断扩展呢?
当然,对于一些只需要存储简单数据的企业来说,云存储是一种灵活的扩展方式。
但是对于关键业务领域,如何来满足需求呢?这个时候Serversan的优势来了。
Server SAN是由多个独立的服务器带的存储组成的一个存储资源池,有着良好的性价比和扩展性。由Server SAN架构所支撑的数据中心相对于传统数据中心有着:整体性能峰值、综合性价比、管理与运维等多方面有着巨大的优势。
但目前,Serversan搭建起来是不合算的,很多人认为其有商务价值,但是没有技术价值。
好文章,需要你的鼓励
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
微软研究院推出SambaY架构,通过创新的门控记忆单元实现AI推理速度10倍提升。该技术采用解码器-混合-解码器设计,在数学推理等复杂任务上表现卓越,为高效AI推理开辟新方向,有望推动AI在教育、科研、医疗等领域的广泛应用。
Dfinity基金会发布Caffeine AI平台,通过自然语言提示创建功能完整的应用程序,旨在将全球开发者数量从5000万扩展到50亿。该平台基于区块链技术,用户可通过对话方式快速构建应用,包括博客和电商网站等。与Anthropic合作提供后端支持,挑战传统应用商店模式。
瑞士EPFL研究团队开发的PERK方法通过参数高效的测试时学习技术,让AI能够像人类一样将长文档信息编码到专门的记忆模块中,显著提升了长上下文推理能力。该方法在多项测试中表现卓越,不仅能处理比训练时长32倍的文档,还解决了传统AI的位置偏见问题,为处理复杂长文档提供了创新解决方案。