长久以来,很多存储客户都会遇到一个问题,即我的业务对存储设备性能需求是多少?
对于存储客户来说,他们非常想知道自己的业务需求情况,好根据业务需求进行购买存储设备,但是这一想法却是很不现实的。
存储设备
如今,很难有一种计算方式能够计算出你的业务对存储设备的性能需求。一个事务对应多少个IO?很难计算出来。
那么存储厂商如何为客户提供恰当的存储设备以满足用户需求呢?
实测+估算是唯一可行的,但同样这种方式也不是很准。
实测,主要是测试存储设备的性能,估算则是厂商根据以往的业务需求,大体估算出这个业务需要多少设备能够满足业务需求。
简单来说,一般初次购买的首台机器基本都不是特合适的,要不就是白买,要不就是性能过剩。
当然,现在存储设备厂商为了能够保证客户业务运行,同时实现利益最大化,基本上买的存储设备一定是性能过剩的。
可以说小到一台服务器,大到一个国家,准确的事先规划代价极大,而且极不靠谱。大多是通过估算来满足需求的。
但是很多人可能就要说了,那么这不就造成了资源的浪费了吗?
其实,随着业务的发展,你会发现,你的存储设备即使前期过剩,但是在两三年后,你会发现你的存储设备基本已经很难满足业务需求了。所以前期的一些过剩并不是造成太大的损失。
那么,有人会问,是否有一种方式能够根据需求来不断扩展呢?
当然,对于一些只需要存储简单数据的企业来说,云存储是一种灵活的扩展方式。
但是对于关键业务领域,如何来满足需求呢?这个时候Serversan的优势来了。
Server SAN是由多个独立的服务器带的存储组成的一个存储资源池,有着良好的性价比和扩展性。由Server SAN架构所支撑的数据中心相对于传统数据中心有着:整体性能峰值、综合性价比、管理与运维等多方面有着巨大的优势。
但目前,Serversan搭建起来是不合算的,很多人认为其有商务价值,但是没有技术价值。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。