长久以来,很多存储客户都会遇到一个问题,即我的业务对存储设备性能需求是多少?
对于存储客户来说,他们非常想知道自己的业务需求情况,好根据业务需求进行购买存储设备,但是这一想法却是很不现实的。
存储设备
如今,很难有一种计算方式能够计算出你的业务对存储设备的性能需求。一个事务对应多少个IO?很难计算出来。
那么存储厂商如何为客户提供恰当的存储设备以满足用户需求呢?
实测+估算是唯一可行的,但同样这种方式也不是很准。
实测,主要是测试存储设备的性能,估算则是厂商根据以往的业务需求,大体估算出这个业务需要多少设备能够满足业务需求。
简单来说,一般初次购买的首台机器基本都不是特合适的,要不就是白买,要不就是性能过剩。
当然,现在存储设备厂商为了能够保证客户业务运行,同时实现利益最大化,基本上买的存储设备一定是性能过剩的。
可以说小到一台服务器,大到一个国家,准确的事先规划代价极大,而且极不靠谱。大多是通过估算来满足需求的。
但是很多人可能就要说了,那么这不就造成了资源的浪费了吗?
其实,随着业务的发展,你会发现,你的存储设备即使前期过剩,但是在两三年后,你会发现你的存储设备基本已经很难满足业务需求了。所以前期的一些过剩并不是造成太大的损失。
那么,有人会问,是否有一种方式能够根据需求来不断扩展呢?
当然,对于一些只需要存储简单数据的企业来说,云存储是一种灵活的扩展方式。
但是对于关键业务领域,如何来满足需求呢?这个时候Serversan的优势来了。
Server SAN是由多个独立的服务器带的存储组成的一个存储资源池,有着良好的性价比和扩展性。由Server SAN架构所支撑的数据中心相对于传统数据中心有着:整体性能峰值、综合性价比、管理与运维等多方面有着巨大的优势。
但目前,Serversan搭建起来是不合算的,很多人认为其有商务价值,但是没有技术价值。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。