长久以来,很多存储客户都会遇到一个问题,即我的业务对存储设备性能需求是多少?
对于存储客户来说,他们非常想知道自己的业务需求情况,好根据业务需求进行购买存储设备,但是这一想法却是很不现实的。
存储设备
如今,很难有一种计算方式能够计算出你的业务对存储设备的性能需求。一个事务对应多少个IO?很难计算出来。
那么存储厂商如何为客户提供恰当的存储设备以满足用户需求呢?
实测+估算是唯一可行的,但同样这种方式也不是很准。
实测,主要是测试存储设备的性能,估算则是厂商根据以往的业务需求,大体估算出这个业务需要多少设备能够满足业务需求。
简单来说,一般初次购买的首台机器基本都不是特合适的,要不就是白买,要不就是性能过剩。
当然,现在存储设备厂商为了能够保证客户业务运行,同时实现利益最大化,基本上买的存储设备一定是性能过剩的。
可以说小到一台服务器,大到一个国家,准确的事先规划代价极大,而且极不靠谱。大多是通过估算来满足需求的。
但是很多人可能就要说了,那么这不就造成了资源的浪费了吗?
其实,随着业务的发展,你会发现,你的存储设备即使前期过剩,但是在两三年后,你会发现你的存储设备基本已经很难满足业务需求了。所以前期的一些过剩并不是造成太大的损失。
那么,有人会问,是否有一种方式能够根据需求来不断扩展呢?
当然,对于一些只需要存储简单数据的企业来说,云存储是一种灵活的扩展方式。
但是对于关键业务领域,如何来满足需求呢?这个时候Serversan的优势来了。
Server SAN是由多个独立的服务器带的存储组成的一个存储资源池,有着良好的性价比和扩展性。由Server SAN架构所支撑的数据中心相对于传统数据中心有着:整体性能峰值、综合性价比、管理与运维等多方面有着巨大的优势。
但目前,Serversan搭建起来是不合算的,很多人认为其有商务价值,但是没有技术价值。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。