作为“无锡市数字卫生工程(一期)”和在建的“医疗数据中心”项目的重要组成部分,无锡市医学影像区域服务中心已经实现了市级八家公立医院的医学影像数据的集中管理、归档存储和统一应用。无锡医院管理中心还率先提出了“虚拟化应用交付”、“影像网络化即时计算”和“临床全景PACS”的理念,致力于将无锡医学影像区域服务平台建设成国内第一,国际领先的区域性医疗信息示范项目。
近日,无锡市医学影像区域服务中心选择部署HDS全套端到端解决方案为其建立区域服务平台,从移动性、统一性、海量数据、分级存储四个方面满足自身在医疗科研和教学领域中存储、管理、保护和搜索各类数据的严苛要求,为将来无锡区域的医疗大数据建设打下坚实的基础。
为了创建一个最佳的服务平台,HDS从以下四个方面为无锡医管中心提供了一套端到端整体解决方案:
1. 移动性
HDS为无锡医管中心提供的CMM解决方案用来管理医学区域影像,采用HNAS4080集群管理在线数据,配置1PB的HCP500来管理近线数据,并通过HNAS的XVL功能来完成区域影像数据的自动化迁移。先进的影像网络化即时计算应用服务,在窄带宽环境下确保获得授权的任何临床医生,在任何时间、任何地点也能轻松便捷的实时进行医学影像处理、重建和分析,使影像数据可以在其之间自动化流转和回读。
2. 统一性
HDS以虚拟化应用交付技术统一部署、管理、发布区域化临床应用模式,兼容各种现有医生工作站的终端硬件(包括平板电脑、智能手机等新型硬件设备),利用有限的网络资源为广大医护人员提供医学影像区域化服务,可随时加载其他业务应用,扩大发布范围,方便管理者对发布终端的集中管控,大大降低了维护成本。
3. 海量数据
随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展,其数量之大和种类之多令人难以置信。比如:一个CT图像含有大约150MB的数据,而一个基因组序列文件大小约为750MB,一个标准的病理图则接近5 GB。如果将这些数据量乘以人口数量和平均寿命,仅一个社区医院就可以生成和累积达数个TB甚至数个PB级的数据量。
为了让所有的影像文件都有一个完美的归属,无锡医管中心便将高性能文件保存在HNAS4080中、历史数据保存在HCP500中,以此来管理海量的影像文件。HDS的高性能NAS控制器集群具备强大的扩展能力,是一款智能的文件管理控制器,能够将近线数据自动归档到控制器中。而HCP500归档控制器集群最大可管理80PB的数据,不仅能提供保存服务,还能提供数据的自我修复、版本管理、压缩和重删、防篡改等功能的服务,做到真正有效地管理和长久保存医学影像文件。HNAS4080和HCP500互联互通,让数据自动归档和回调,共同搭建了医管中心核心文件和内容平台。
4. 分级存储
为了能够更好地互相联合,HDS还专门为HNAS4080和HCP500分别配置了一级存储VSP G1000和二级存储HUS150。HDS的VSP G1000存储能将高性能空间分配给HNAS4080,提供高性能影像文件的保存,所有影像文件的元数据都可以放置在VSP G1000的企业级闪存FMD中,提高文件的检索效率;而二级存储区域则部署了HDS的HUS150存储,将空间分配给HCP500归档控制器集群,用来保存100天以外的历史影像数据。
HDS先进的区域医疗解决方案构建影像云服务平台为无锡医管中心提供了良好的运行基础,并与影像云计算完美结合,其强大的扩展能力满足了无锡医管中心未来数据的高速增长需求,最大化减少空间和能耗的利用,减少医院管理中心的总体投资,让海量数据无忧管理,畅游云端。
好文章,需要你的鼓励
这篇研究提出了OThink-R1,一种创新的大型推理模型,能够像人类一样在快速直觉思维和慢速深度推理之间自动切换。研究者发现,现有推理模型即使面对简单问题也会生成冗长的推理过程,导致计算资源浪费。通过分析推理轨迹并使用LLM评判员区分冗余和必要推理,OThink-R1能根据问题复杂度动态调整思考深度。实验表明,该方法平均减少了23.4%的生成文本量,同时保持或提高了准确率,代表了向更高效、更人性化AI推理系统迈出的重要一步。
这项研究提出了SHARE,一种新型文本到SQL修正框架,它利用三个小型语言模型(SLM)协同工作,实现高效精准的SQL错误修正。SHARE首先通过基础行动模型将SQL转换为行动轨迹,再经过模式增强模型和逻辑优化模型的层次化精细化修正。研究团队还创新性地提出了层次化自演化训练策略,大大提高了训练数据效率。实验结果表明,SHARE在多个基准测试上显著提升了SQL生成准确率,计算成本仅为传统方法的十分之一,并展现出强大的泛化能力,适用于各种生成器模型和SQL方言。
这项由香港大学和南京大学等机构研究人员联合开发的双专家一致性模型(DCM)解决了高质量视频生成中的效率难题。研究团队发现扩散模型蒸馏过程中存在优化冲突:早期阶段负责语义布局与运动,后期阶段关注细节精修,两者学习动态差异显著。DCM创新性地将这两个任务分配给不同的专家模型,通过参数高效的实现方式,使模型仅需4步即可生成接近50步原始模型质量的视频,大幅提升生成速度,为实用化AI视频创作铺平道路。
这项研究介绍了QARI-OCR,一种基于Qwen2-VL-2B-Instruct模型微调的阿拉伯文字识别系统。研究团队通过三阶段合成数据训练,成功解决了阿拉伯文字识别中的主要挑战:曲线连笔特性、上下文变化的字母形状和发音符号。QARI v0.2模型创下了0.061的字符错误率和0.160的单词错误率,超越了现有开源解决方案,为阿拉伯文化遗产的数字化保存提供了重要工具。