Sardina 希望通过价格优势,将仍在使用 SUSE Enterprise Storage (SES) 的用户吸引到 FishOS 平台上——无论存储容量多大,每个核心的许可费仅为 1 欧元。
Sardina Systems 自 2014 年起推出其 FishOS 云管理平台,该平台整合了 Openstack、Ceph 和 Kubernetes。此次推出特殊的 1 欧元优惠正是针对 SUSE 正在逐步退出 Ceph 存储市场这一趋势。
2020 年,SUSE 收购了 Kubernetes 领域的知名公司 Rancher Labs,不久后在 2021 年初,SUSE 决定取消其基于 Ceph 的 SUSE Enterprise Storage 产品。SUSE 退出 Ceph 存储领域的步伐仍在继续:Sardina 指出了一封近期在 Ceph 用户邮件列表中出现的邮件,该邮件中不仅提到了 openSUSE 中 Ceph 客户端维护者退任的消息,还对 SLE 客户发布了如下公告:
9.3 ceph client 包已被废弃,并将在 15 SP7 中移除
Ceph 是一款开源存储工具,正如 Register 的姊妹网站 Blocks & Files 经常报道的那样。最直观的理解是,可以将 Ceph 看作是 RAID 在广域集群中的延伸:RAID 能够将一台机器上的多个硬盘组合成一个更大的虚拟硬盘,而 Ceph 则通过将多台存储服务器集成为一个存储池,为您的网络提供存储支持。Ceph 的一大优势在于,这些服务器并不需要集中放置在同一地点——它们可以分布在一个国家、一个大陆,甚至全世界各地。
SUSE 曾尝试推出一款名为 Aquarium 的基于 Ceph 的更简化替代存储工具,但该方案未能获得市场青睐,其 Github 仓库也已于 2023 年归档。目前,SUSE 的存储产品仅面向 Kubernetes 用户。
SUSE 发言人在一份声明中告诉 The Register: “SUSE Storage 是 SUSE 目前推出的存储产品,基于 Longhorn 项目,代表了一种面向未来、容器原生的进化方向。它取代了已结束生命周期的 SUSE Enterprise Storage——后者是一种更传统、范围更广的软件定义存储解决方案。SUSE 正与所有客户共同努力,为其当前和未来的软件定义存储需求寻找最佳解决方案。”
当然,还有其他几家公司也乐意为您提供类似的存储产品——但价格却远不便宜。这毕竟是企业级产品,其官网通常不会公开标价。如果您是规模足够大的客户需要此类产品,价格谈判往往会从“您心中预期的金额是多少?”等问题开始。
Red Hat 更侧重于竞争对手 Gluster 存储技术,其费用大约为每节点每年 4,500 美元。Red Hat 也提供 Ceph 产品,但对于 12 个节点来说,年费用大约在 32,000 美元左右。
相比之下,每节点 1 欧元的价格显得十分划算。FishOS 看起来完全能满足需求;我们也发现了一些正面的评价。Sardina 的公告中提到了一个涉及德国云服务供应商 Grass-Merkur 的案例研究,OpenInfra Foundation 也对此给予了积极报道。Sardina 过去曾在平台停运之际提供迁移支持,例如,当以色列初创公司 Stratoscale 数年后关闭业务时,Sardina 就主动协助客户迁移至 FishOS。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。