2023 年 9 月 25 日,北京 – 日立集团 (TSE: 6501) 旗下提供现代基础架构、数据管理与数字解决方案的子公司 Hitachi Vantara 今天宣布,在 2023 年 Gartner® 主存储魔力象限™ 报告中,Hitachi Vantara 入选“领导者”象限。在过去13 年里,Hitachi Vantara 已 15 次被 Gartner 报告评为领导者,其中包括今年入选主存储魔力象限。今年报告中评估的 Hitachi Vantara 产品是虚拟存储平台 (VSP) 5600 和软件定义块存储 (VSS Block) 解决方案。

下载 2023 年Gartner® 主存储魔力象限™ 报告:
https://www.hitachivantara.com/ext/2023-gartner-magic-quadrant-for-primary-storage.html
Hitachi Vantara 产品与解决方案副总裁 Gary Lyng 表示:“我们相信,在 2023 年主存储魔力象限报告中获评领导者,彰显了 Hitachi Vantara 在致力提供尖端存储解决方案所做出的不懈努力。我们认为,这一表彰说明我们的前瞻思维方式受到了认可,包括在系统全生命周期内大幅减少温室气体排放的能力,以及整合人工智能、机器学习、预测性分析等新兴技术以优化数据管理的能力。我们相信,Hitachi Vantara 在主存储魔力象限中连续多年榜上有名,不仅说明了我们系统和数据的可靠性,也进一步坚定了我们推动存储行业在创新和可持续发展之路上不断突破的决心。”
Hitachi Vantara 相信,在魔力象限报告中获评领导者,证实了公司对创新和以客户为中心的解决方案的长期承诺。Gartner 在魔力象限报告中指出:“领导者象限中的供应商在执行能力和愿景完整性方面的综合得分最高。获评领导者的公司拥有推动新技术被接受所需的市场份额、市场信誉、营销和销售能力。这些供应商对市场需求了解深刻。他们是创新者和思想领导者,拥有精心制定、阐述清晰的计划,使得客户及潜在客户在设计存储基础架构和战略时能够利用这些计划。此外,获评领导者的公司还在三个主要地区开展业务,财务表现稳定,并支持平台计划。”
随着当今企业环境的不断演变,除需为客户提供高速度和高效率的产品外,存储产品还必须做到更多。数据密集型技术和生成式人工智能等应用程序,正掀起一场奔向更高洞察力、自动化水平和可预测性的“淘金热”。但这些技术同时也使其运行所依赖的基础架构和混合云环境承受更大压力。近期的一份报告发现,72% 的中国公司担心其当前的基础架构将无法扩展以满足未来需求。数字基础架构必须提供自适应和弹性服务,通过平台更快地运行更多应用程序,并为现有工作负载增加更多容量。
Hitachi Vantara 的 VSP 5600 系列支持核心应用程序和云原生开发,并保证 100% 数据可用性。日立的 VSS 块存储旨在整合新型和核心工作负载,实施云优先策略以支持应用程序现代化。
Gartner 在报告中根据优势和注意事项对不同的供应商进行了评估。魔力象限报告采用图形化处理和一致的评估标准,可帮助企业快速确定技术供应商在实现其既定愿景方面的表现,以及他们在 Gartner 市场观点中的表现。如需全面了解Hitachi Vantara 的整个存储产品组合,请点击此处:
https://www.hitachivantara.com/en-us/products/storage-platforms/primary-block-storage.html。
好文章,需要你的鼓励
字节跳动Seed团队提出的虚拟宽度网络(VWN)通过解耦嵌入宽度与主干宽度,在几乎不增加计算成本的情况下显著提升模型表示能力。8倍虚拟宽度扩展使训练效率提升2.5-3.5倍,且发现虚拟宽度因子与损失呈对数线性关系,为大模型效率优化开辟新维度。
亚马逊研究团队通过测试15个AI模型发现,当AI助手记住用户背景信息时,会对相同情感情况产生不同理解,称为"个性化陷阱"。优势社会地位用户获得更准确的情感解释,而弱势群体接受质量较低的理解。这种系统性偏见可能在心理健康、教育等领域放大社会不平等,提醒我们需要在追求AI个性化的同时确保算法公平性。
两家公司在OverdriveAI峰会上分享了AI应用经验。Verizon拥有超过1000个AI模型,用于预测客户呼叫原因和提供个性化服务,将AI推向边缘计算。Collectors则利用AI识别收藏品真伪,将每张卡片的鉴定时间从7分钟缩短至7秒,估值从8.5亿美元增长至43亿美元。
微软等机构联合研发了DOCREWARD文档奖励模型,专门评估文档的结构布局和视觉风格专业度。该模型基于包含11.7万对文档的大规模数据集训练,在人类偏好准确性测试中超越GPT-5达19.4个百分点。研究解决了现有AI工作流忽视文档视觉呈现的问题,为智能文档生成和专业化排版提供了新的技术方案。