数据存储厂商NetApp公布第一季度财报结果超出了自己的收益和收入预期,但这仅仅是因为NetApp刚刚在两周前调低了原先的预期。
NetApp主要面向混合云IT环境销售混合数据存储硬件和软件。NetApp该季度在股票补偿等特定成本之前的利润为每股65美分,收入为12.4亿美元,低于一年前的14.7亿美元。
此前华尔街预期利润为每股58美分,收入为12.3亿美元。
NetApp最初预测第一季度每股盈利78至86美分,收入在13.1亿美元至14.6亿美元之间。但两周前,NetApp令人意外地大幅调低预期,利润调整为每股55至60美分,并表示收入可能在12.2亿美元至12.4亿美元之间。
NetApp收入下滑的一个原因是丢掉了来自此前企业软件许可协议的9000万美元销售额,因为客户没有再续订这些许可协议了。
NetApp首席执行官George Kurian表示,他对这一结果感到失望,但对公司的战略和商业模式仍然充满信心。
“我们对毛利率和成本结构所做的改善为自由现金流提供了支持,让我们能够应对持续的宏观经济逆势,同时制定能够让我们恢复增长的战略措施,”他说。
他在电话会议中补充说,他收到了客户和合作伙伴关于其Data Fabric战略的积极反馈。这就需要NetApp向那些想要采用“软件定义”方法管理数据的客户销售它的混合存储硬件和软件服务。Data Fabric还可以帮助客户连接不同的存储资源并简化内部部署环境与云环境之间的信息管理,从而可以根据需要快速将数据移入和移出云端。
然而,这一战略是否有助于NetApp获得新客户仍有待观察。两周前,Moor Insights&Strategy分析师Steve McDowell曾表示,NetApp正在努力在现有传统客户群之上扩大市场,而现有的客户群似乎也正在萎缩。但他表示,对于NetApp而言,Data Fabric战略仍然是一个不错的选择,因为目前在混合云和多云市场中并没有明确的主导者。所以机会仍然是有的。
McDowell表示:“NetApp没有从市场中消失的危险,但仍然处境艰难,而Kurian做出了他能够做出的唯一举措。”
Kurian的乐观态度似乎至少让投资者们感到放心。两周前市值缩水20%多之后,NetApp股价有所回升,盘后交易中上涨了3%。NetApp还通过股票回购和现金股息的方式向股东返还3.65亿美元。
展望下一季度,NetApp预计收入在13.25亿美元至14.75亿美元之间,其中间点要高于分析师预期的13.7亿美元收入。
另一方面在中国市场,联想与NetApp组成的合资公司正在默默的耕耘。双方有很美好的愿景,NetApp具备多年的存储技术和基于闪存的创新能力,以及在存储市场的影响力。联想具备全球的覆盖渠道以及在中国市场强有力的本地化服务的能力。新的公司的高层也多次强调要基于Data Fabric这个发展理念来为用户提供智能数据管理。
目前新的公司已经陆续推出多个解决方案,特别是基于智慧化的解决方案。在中国一个更显著的特征是从上到下对于智能的支持,“人工智能”“智能+”多次被政府工作报告提到。而人工智能发展的基础是数据,是庞大的数据,目前联想凌拓除了推动NetApp Data ONTAP统一存储解决方案、NetApp FlexPod,也在通过基于全闪存来推动智能化应用落地。
联想凌拓已经在包括医院、政府、教育等领域加速IT升级,积极推动数据向着智能化应用发展。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。