Veeam 日前开始设立 Splunk 连接器,以便用 Splunk 监控 IT 基础架构的客户能够监控 Veeam Backup 并获得有关问题的警报信息。
思科旗下的 Splunk 可从多个来源捕获、存储、索引和关联机器生成的实时 IT 基础架构数据。用户可以访问 Splunk 仪表板,监控基础架构并处理相关的问题。Splunk 称,《财富》500 强企业中有 92 家公司是旗下安全信息和事件管理(SIEM)软件的客户。Veeam 的备份和恢复产品拥有 50 多万客户,其中的大型企业客户也可能是 Splunk 的客户。Veeam App for Splunk 将 Veeam 加进了数据源。
首席运营官 John Jester 在一份声明中表示,“Veeam致力为每一位客户提供数据恢复能力,包括与领先的安全平台的紧密整合。”
该应用程序将与 Splunk 用户角色和位置管理进行整合,可处理由 Veeam Backup & Replication 发送到 syslog 服务器的事件,并为 Splunk 用户提供以下功能:
Jester 表示,“安全专业人员可以通过详细的仪表板、报告和警报利用 Splunk 密切监控他们的Veeam备份环境。应对网络攻击需要跨基础架构的整合,Veeam App for Splunk 可以将 Veeam 事件数据引入 Splunk,客户因而能够使用现有工具监控勒索软件、意外删除、恶意软件和其他网络威胁等安全事件。”
Veeam ONE v12.1 引入了 Syslog SIEM 集成。企业通常倾向于使用单一的 SIEM 设施,不必逐个检查应用程序(如 Veeam ONE)的安全状态和活动。Jester 很清楚这一点,他表示,“这意味着企业可以快速、轻松地在他们的 Veeam 备份环境中处理重要的监控和事件数据,这些可以在他们可能正在监控的其他源环境的同一个界面中呈现。”
Veeam 正在逐步成为企业友好型解决方案。Splunk 连接器的引入表明,Veeam 将追随竞争对手 Cohesity、Commvault、Druva、Rubrik 和 Veritas 的脚步,这些公司已经整合了 Splunk。Veeam 已经可以通过发送系统日志数据、SNMP陷阱和其他日志数据与Graylog、IBM的QRadar、Micro Focus ArcSight、LogRhythm和AlienVault 进行整合。Splunk App 是 Veeam 在 SIEM 整合道路上迈出的一步。
Veeam正稳步向企业级解决方案迈进。通过这个Splunk连接器,它正追随竞争对手Cohesity、Commvault、Druva、Rubrik和Veritas的脚步,这些公司已经有了Splunk集成。Veeam已经可以通过发送系统日志数据、SNMP陷阱和其他日志数据与Graylog、IBM的QRadar、Micro Focus ArcSight、LogRhythm和AlienVault进行集成。这个Splunk应用是Veeam在SIEM集成道路上的又一进步。
Veeam App for Splunk 支持 Splunk Enterprise 9.1.0 及更高版本和 Splunk Cloud Platform 9.1.2308 及更高版本,现在可以通过此处的 Splunkbase 购买。Veeam Data Platform 高级或高级许可证可免费提供 Veeam App for Splunk,其中包括 syslog 事件转发支持。
好文章,需要你的鼓励
Birk Jernstrom在Shopify收购其上一家初创公司后,创立了货币化平台Polar,专注帮助开发者构建单人独角兽企业。该平台为开发者提供支付基础设施服务,处理全球计费和税务问题,让企业从第一天起就能销售在线产品和SaaS订阅服务。Polar获得了Accel领投的1000万美元种子轮融资,自2024年9月推出以来已吸引1.8万名客户。
Anthropic和Open Philanthropy研究人员发现,之前声称AI推理模型存在"准确率崩溃"的研究实际上混淆了推理能力和物理限制。通过重新分析发现,AI模型在遇到输出长度限制时会主动停止,而非推理失败;部分测试题目本身无解却被当作失败案例;改用程序生成方式后,模型在复杂问题上表现出色,揭示了AI评估方法的重要缺陷。
OpenAI首席执行官奥特曼证实,Meta为挖角OpenAI和谷歌DeepMind的顶尖AI研究人员,开出了超过1亿美元的薪酬包。然而,这些挖角努力基本失败。奥特曼表示,员工们认为OpenAI在实现AGI方面机会更大,公司文化更注重创新使命而非高薪。Meta正在组建超级智能团队,但面临OpenAI、Anthropic等竞争对手的激烈竞争。
华为联合多所高校发布TeleMath数据集,这是首个专门评估大型语言模型在通信数学问题求解能力的基准测试。研究团队设计创新的合成数据生成框架,从50个专家问题扩展至500个测试样本,涵盖信号处理、网络优化等七大领域。评估结果显示,专门的推理模型明显优于通用模型,为通信AI应用指明方向。