在这个信息化迅猛发展的时代,反欺诈领域的专家们正站在一个新的技术革命的门槛上——生成式人工智能(AI)。这项技术以其独特的能力,即从现有数据中学习并生成新的信息,引起了广泛的关注。据最新研究显示,超过八成的反欺诈专家预计到2025年,他们的工作将与生成式AI紧密相连。
这项由SAS和美国注册舞弊审查师协会(ACFE)联合进行的研究,揭示了一个不容忽视的现实:尽管对生成式AI的兴趣空前高涨,但其在实际应用中仍面临诸多挑战。《2024反欺诈技术基准报告》汇集了来自全球近1200位ACFE成员的调查结果,展现了自2019年以来反欺诈技术的关键演进趋势。
报告中的数据显示,人们对AI和机器学习(ML)技术的关注已达到前所未有的高度。18%的反欺诈专业人士已经在使用AI/ML技术,另有32%的专业人士计划在未来两年内开始实施这些技术。这一趋势预示着,到明年年底,使用AI/ML技术的比例可能会增长近三倍。
然而,AI和ML技术的部署并没有达到预期的速度。自2019年以来,这些技术在欺诈侦测和防范领域的实际应用增长了5%,远低于之前预期的采用率。这一现象表明,尽管对高级分析技术的需求强烈,但将其应用于实践却是一个复杂的过程。
此外,报告还指出,尽管许多数据分析技术已经成熟,但生物识别和机器人技术在反欺诈领域的应用仍在稳步增长。特别是在银行和金融服务业,这些技术的应用尤为广泛。
面对生成式AI的易获取性和易用性,ACFE总裁John Gill警示道,一旦这些工具落入不法之徒之手,可能带来严重后果。因此,企业在增加反欺诈技术预算的同时,也需要考虑如何在符合伦理道德的前提下使用这些技术。
SAS风险与欺诈管理、合规解决方案高级副总裁Stu Bradley强调了选择合适技术合作伙伴的重要性,并提到SAS Viya这样的云原生、支持多种编程语言的AI平台,可以帮助企业更轻松地从风险管理解决方案中获益。SAS还提供了在线数据仪表板,让用户可以根据行业、区域和组织规模查阅调查结果,进一步了解反欺诈技术的跨行业趋势。
生成式AI的未来究竟是繁荣还是衰败?这个问题的答案尚未揭晓。但可以肯定的是,企业在采用生成式AI和其他AI技术时,必须慎之又慎。在追求创新的同时,企业需要不断自问:“我们能做什么?”和“我们应该做什么?”随着时间的推移,生成式AI的能力将不断增强,它在反欺诈工作中的作用也将越来越显著。企业需要制定合适的指导方针,以最大限度地减少错误和偏见。ACFE研究总监Mason Wilder的话或许是对未来最好的概括:“让我们拭目以待,看这项技术的采用速度将会有多快。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。