在医疗保健行业,可重复利用的健康数据分析解决方案能够给个人和社区带来收益。然而,由于医疗系统数量庞大,数据格式多种多样,数据整合工作复杂耗时,拖慢了构建和部署健康分析解决方案的速度。AI和分析领域的全球领导者SAS今日宣布推出SAS®健康(SAS® Health),这是一种创新的、企业级的端到端解决方案,用于数据和分析自动化,可简化健康数据管理,改善数据治理并加速病患需求洞察。
这些分析洞察——从临床人员短缺问题的主动识别,到病症筛查中心的可视化分析——能够支持医疗保健系统评估医患互动质量,并为复杂慢性病患者的治疗带来积极影响。
强大的分析+公共健康数据模型
医疗服务机构和保险公司需要安全地进行数据收集工作,实现数据集中,并对数据进行优化调整,以便为分析做好准备。为了应对这一挑战,SAS健康构建了公共健康数据模型,可将行业内广泛使用的标准内嵌到平台中。只需安全地输入连接相关配置信息,客户就可以运行数据模型,解决医疗服务中最关键的问题。
利用分析和AI平台SAS®Viya®的强大功能,SAS健康可以更快速获得具备可操作性的洞察,并进一步促进行业标准和法规的落地执行。
“在强大的高级分析平台上构建具备一致性的通用数据模型十分重要,这关乎医院系统以及医疗保健服务的未来。”SAS医疗保健和生命科学副总裁Gail Stephens表示:“SAS健康提供了一个很好的机会,通过提高数据和分析框架的效率来改善病患护理和治疗,最终能够使医疗服务机构和保险公司更快地得出更好的分析结果。”
基于FHIR标准的医疗保健数据
SAS健康在SingleStore上的公共健康数据模型将成为一个中枢节点,高效灵活地将各种健康数据与临床、财务和运营信息连接起来,从而降低成本并简化数据访问。作为云原生的解决方案,SAS健康将支持用户以无代码或低代码的方式基于多个行业标准轻松快速地获取数据。快速医疗保健互操作性资源(FHIR标准)将是第一个执行标准。
FHIR行业数据标准正在全球得到越来越广泛的使用,该标准定义了在应如何在计算机系统之间交换医疗保健信息。世界上一些主要的电子健康记录(EHR)公司正迅速采取行动支持FHIR标准。在美国,医疗保险和医疗补助服务中心(CMS)已经强制要求使用FHIR。
数十年来,在银行业、政府、保险、医疗保健、零售业、制造、能源和电信/媒体等领域,SAS专注于提供量身定制的解决方案,帮助行业应对所面临的挑战。在此基础上,今年5月,SAS宣布未来三年将投资10亿美元,进一步开发基于AI的行业解决方案。SAS健康就是其中一项开发成果。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。