在医疗保健行业,可重复利用的健康数据分析解决方案能够给个人和社区带来收益。然而,由于医疗系统数量庞大,数据格式多种多样,数据整合工作复杂耗时,拖慢了构建和部署健康分析解决方案的速度。AI和分析领域的全球领导者SAS今日宣布推出SAS®健康(SAS® Health),这是一种创新的、企业级的端到端解决方案,用于数据和分析自动化,可简化健康数据管理,改善数据治理并加速病患需求洞察。
这些分析洞察——从临床人员短缺问题的主动识别,到病症筛查中心的可视化分析——能够支持医疗保健系统评估医患互动质量,并为复杂慢性病患者的治疗带来积极影响。
强大的分析+公共健康数据模型
医疗服务机构和保险公司需要安全地进行数据收集工作,实现数据集中,并对数据进行优化调整,以便为分析做好准备。为了应对这一挑战,SAS健康构建了公共健康数据模型,可将行业内广泛使用的标准内嵌到平台中。只需安全地输入连接相关配置信息,客户就可以运行数据模型,解决医疗服务中最关键的问题。
利用分析和AI平台SAS®Viya®的强大功能,SAS健康可以更快速获得具备可操作性的洞察,并进一步促进行业标准和法规的落地执行。
“在强大的高级分析平台上构建具备一致性的通用数据模型十分重要,这关乎医院系统以及医疗保健服务的未来。”SAS医疗保健和生命科学副总裁Gail Stephens表示:“SAS健康提供了一个很好的机会,通过提高数据和分析框架的效率来改善病患护理和治疗,最终能够使医疗服务机构和保险公司更快地得出更好的分析结果。”
基于FHIR标准的医疗保健数据
SAS健康在SingleStore上的公共健康数据模型将成为一个中枢节点,高效灵活地将各种健康数据与临床、财务和运营信息连接起来,从而降低成本并简化数据访问。作为云原生的解决方案,SAS健康将支持用户以无代码或低代码的方式基于多个行业标准轻松快速地获取数据。快速医疗保健互操作性资源(FHIR标准)将是第一个执行标准。
FHIR行业数据标准正在全球得到越来越广泛的使用,该标准定义了在应如何在计算机系统之间交换医疗保健信息。世界上一些主要的电子健康记录(EHR)公司正迅速采取行动支持FHIR标准。在美国,医疗保险和医疗补助服务中心(CMS)已经强制要求使用FHIR。
数十年来,在银行业、政府、保险、医疗保健、零售业、制造、能源和电信/媒体等领域,SAS专注于提供量身定制的解决方案,帮助行业应对所面临的挑战。在此基础上,今年5月,SAS宣布未来三年将投资10亿美元,进一步开发基于AI的行业解决方案。SAS健康就是其中一项开发成果。
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。