在医疗保健行业,可重复利用的健康数据分析解决方案能够给个人和社区带来收益。然而,由于医疗系统数量庞大,数据格式多种多样,数据整合工作复杂耗时,拖慢了构建和部署健康分析解决方案的速度。AI和分析领域的全球领导者SAS今日宣布推出SAS®健康(SAS® Health),这是一种创新的、企业级的端到端解决方案,用于数据和分析自动化,可简化健康数据管理,改善数据治理并加速病患需求洞察。
这些分析洞察——从临床人员短缺问题的主动识别,到病症筛查中心的可视化分析——能够支持医疗保健系统评估医患互动质量,并为复杂慢性病患者的治疗带来积极影响。
强大的分析+公共健康数据模型
医疗服务机构和保险公司需要安全地进行数据收集工作,实现数据集中,并对数据进行优化调整,以便为分析做好准备。为了应对这一挑战,SAS健康构建了公共健康数据模型,可将行业内广泛使用的标准内嵌到平台中。只需安全地输入连接相关配置信息,客户就可以运行数据模型,解决医疗服务中最关键的问题。
利用分析和AI平台SAS®Viya®的强大功能,SAS健康可以更快速获得具备可操作性的洞察,并进一步促进行业标准和法规的落地执行。
“在强大的高级分析平台上构建具备一致性的通用数据模型十分重要,这关乎医院系统以及医疗保健服务的未来。”SAS医疗保健和生命科学副总裁Gail Stephens表示:“SAS健康提供了一个很好的机会,通过提高数据和分析框架的效率来改善病患护理和治疗,最终能够使医疗服务机构和保险公司更快地得出更好的分析结果。”
基于FHIR标准的医疗保健数据
SAS健康在SingleStore上的公共健康数据模型将成为一个中枢节点,高效灵活地将各种健康数据与临床、财务和运营信息连接起来,从而降低成本并简化数据访问。作为云原生的解决方案,SAS健康将支持用户以无代码或低代码的方式基于多个行业标准轻松快速地获取数据。快速医疗保健互操作性资源(FHIR标准)将是第一个执行标准。
FHIR行业数据标准正在全球得到越来越广泛的使用,该标准定义了在应如何在计算机系统之间交换医疗保健信息。世界上一些主要的电子健康记录(EHR)公司正迅速采取行动支持FHIR标准。在美国,医疗保险和医疗补助服务中心(CMS)已经强制要求使用FHIR。
数十年来,在银行业、政府、保险、医疗保健、零售业、制造、能源和电信/媒体等领域,SAS专注于提供量身定制的解决方案,帮助行业应对所面临的挑战。在此基础上,今年5月,SAS宣布未来三年将投资10亿美元,进一步开发基于AI的行业解决方案。SAS健康就是其中一项开发成果。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。