请带着你的回忆看下文,想想你这些年删过的库,被删过的库。
数据库备份是个老生常谈的话题,看似很简单,但在实际操作过程中,运维人员往往会遇到这样或那样的“坑”。
数据库为什么要备份?时至今日,我认为这个问题已经不再是问题了,换个角度来看,数据库备份能规避哪些风险?
其实从数据诞生时起就伴随着丢失风险,比如,自然灾难、电力故障、网络故障、硬件故障、软件故障、人为故障等。
上面列举了一大串风险,其现实意义是,你今天躲过了硬件bug,明天避开了雷劈,后天绕开了断电,大后天还是可能会“手滑”碰到误删除。
随着DT时代的到来,企业对数据的依赖程度与日俱增,数据保护早已成为企业的一门必修课。只有拥有先知先觉的防范意识和充分的技术准备,才能“覆巢之下,亦有完卵”。
与其承受天灾人祸的担忧,为何不选择一个专业的数据库备份方案:
阿里云数据库备份DBS已经商用,作为数据库备份通道,与对象存储OSS一起构建无门槛的云数据库备份解决方案,整个配置过程只需5分钟,就可以实现秒级RPO(Recovery Point Objective恢复点目标,通俗理解是当数据库故障时,允许丢失多长时间数据,RPO越小越好)的实时备份。
1、DBS典型应用场景:
l 实时备份
当用户对数据备份要求较高时,比如需要连续实时备份,且备份过程中不影响业务运行,此时可购置阿里云数据库备份DBS服务,实现数据库的热备份,DBS可实现数据实时增量备份、精确到秒级的数据恢复能力。解决方案架构示例如下:
架构设计说明:
关键部件部署:在用户本地部署有两套数据库:生产数据库和恢复库,分别用于生产数据的存储、故障后数据恢复。
在阿里云的两个区域(例如:华南1、华北1)分别购置存储服务,例如OSS对象存储或者NAS文件存储。
购置阿里云的DBS服务,用于用户本地数据库实时热备份至云上存储。
云下生产数据备份至云上:(可通过以下两种方案中的任意一种将云下生产数据备份至云上)
用户可在本地再部署一套存储,将生产数据先备份至本地IDC的存储,再通过本地IDC存储灾备拷贝至云上存储。
用户本地的生产数据库与云上存储之间通过阿里云DBS,将生产数据库中的数据直接热备份至云上两个区域的存储中。
数据恢复:
如果用户本地IDC的生产数据库发生故障,但本地IDC的存储运行正常,可通过本地IDC的 存储将数据恢复至本地IDC的恢复库。
如果用户本地IDC的生产数据库和存储均发生故障,或没有部署本地存储,则可通过DBS将云上存储将数据恢复至本地恢复库。
架构特点:
优点:技术要求高、一致性好,恢复时间短。
缺点:RTO随着数据库是来大小而变化。
应用场景:比较成熟的备份手段,适用于大部分的关系型数据库。
除了为数据库提供连续数据保护、低成本的备份服务外,DBS还可在多种环境下提供强有力的数据保护,包括公共云、企业自建数据中心及其他云厂商。DBS具备低成本、高性能、零风险等优势,为用户提供理想的云数据库备份解决方案。
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。