请带着你的回忆看下文,想想你这些年删过的库,被删过的库。
数据库备份是个老生常谈的话题,看似很简单,但在实际操作过程中,运维人员往往会遇到这样或那样的“坑”。
数据库为什么要备份?时至今日,我认为这个问题已经不再是问题了,换个角度来看,数据库备份能规避哪些风险?
其实从数据诞生时起就伴随着丢失风险,比如,自然灾难、电力故障、网络故障、硬件故障、软件故障、人为故障等。
上面列举了一大串风险,其现实意义是,你今天躲过了硬件bug,明天避开了雷劈,后天绕开了断电,大后天还是可能会“手滑”碰到误删除。
随着DT时代的到来,企业对数据的依赖程度与日俱增,数据保护早已成为企业的一门必修课。只有拥有先知先觉的防范意识和充分的技术准备,才能“覆巢之下,亦有完卵”。
与其承受天灾人祸的担忧,为何不选择一个专业的数据库备份方案:
阿里云数据库备份DBS已经商用,作为数据库备份通道,与对象存储OSS一起构建无门槛的云数据库备份解决方案,整个配置过程只需5分钟,就可以实现秒级RPO(Recovery Point Objective恢复点目标,通俗理解是当数据库故障时,允许丢失多长时间数据,RPO越小越好)的实时备份。
1、DBS典型应用场景:
l 实时备份
当用户对数据备份要求较高时,比如需要连续实时备份,且备份过程中不影响业务运行,此时可购置阿里云数据库备份DBS服务,实现数据库的热备份,DBS可实现数据实时增量备份、精确到秒级的数据恢复能力。解决方案架构示例如下:
架构设计说明:
关键部件部署:在用户本地部署有两套数据库:生产数据库和恢复库,分别用于生产数据的存储、故障后数据恢复。
在阿里云的两个区域(例如:华南1、华北1)分别购置存储服务,例如OSS对象存储或者NAS文件存储。
购置阿里云的DBS服务,用于用户本地数据库实时热备份至云上存储。
云下生产数据备份至云上:(可通过以下两种方案中的任意一种将云下生产数据备份至云上)
用户可在本地再部署一套存储,将生产数据先备份至本地IDC的存储,再通过本地IDC存储灾备拷贝至云上存储。
用户本地的生产数据库与云上存储之间通过阿里云DBS,将生产数据库中的数据直接热备份至云上两个区域的存储中。
数据恢复:
如果用户本地IDC的生产数据库发生故障,但本地IDC的存储运行正常,可通过本地IDC的 存储将数据恢复至本地IDC的恢复库。
如果用户本地IDC的生产数据库和存储均发生故障,或没有部署本地存储,则可通过DBS将云上存储将数据恢复至本地恢复库。
架构特点:
优点:技术要求高、一致性好,恢复时间短。
缺点:RTO随着数据库是来大小而变化。
应用场景:比较成熟的备份手段,适用于大部分的关系型数据库。
除了为数据库提供连续数据保护、低成本的备份服务外,DBS还可在多种环境下提供强有力的数据保护,包括公共云、企业自建数据中心及其他云厂商。DBS具备低成本、高性能、零风险等优势,为用户提供理想的云数据库备份解决方案。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。