请带着你的回忆看下文,想想你这些年删过的库,被删过的库。
数据库备份是个老生常谈的话题,看似很简单,但在实际操作过程中,运维人员往往会遇到这样或那样的“坑”。
数据库为什么要备份?时至今日,我认为这个问题已经不再是问题了,换个角度来看,数据库备份能规避哪些风险?
其实从数据诞生时起就伴随着丢失风险,比如,自然灾难、电力故障、网络故障、硬件故障、软件故障、人为故障等。
上面列举了一大串风险,其现实意义是,你今天躲过了硬件bug,明天避开了雷劈,后天绕开了断电,大后天还是可能会“手滑”碰到误删除。
随着DT时代的到来,企业对数据的依赖程度与日俱增,数据保护早已成为企业的一门必修课。只有拥有先知先觉的防范意识和充分的技术准备,才能“覆巢之下,亦有完卵”。
与其承受天灾人祸的担忧,为何不选择一个专业的数据库备份方案:
阿里云数据库备份DBS已经商用,作为数据库备份通道,与对象存储OSS一起构建无门槛的云数据库备份解决方案,整个配置过程只需5分钟,就可以实现秒级RPO(Recovery Point Objective恢复点目标,通俗理解是当数据库故障时,允许丢失多长时间数据,RPO越小越好)的实时备份。
1、DBS典型应用场景:
l 实时备份
当用户对数据备份要求较高时,比如需要连续实时备份,且备份过程中不影响业务运行,此时可购置阿里云数据库备份DBS服务,实现数据库的热备份,DBS可实现数据实时增量备份、精确到秒级的数据恢复能力。解决方案架构示例如下:
架构设计说明:
关键部件部署:在用户本地部署有两套数据库:生产数据库和恢复库,分别用于生产数据的存储、故障后数据恢复。
在阿里云的两个区域(例如:华南1、华北1)分别购置存储服务,例如OSS对象存储或者NAS文件存储。
购置阿里云的DBS服务,用于用户本地数据库实时热备份至云上存储。
云下生产数据备份至云上:(可通过以下两种方案中的任意一种将云下生产数据备份至云上)
用户可在本地再部署一套存储,将生产数据先备份至本地IDC的存储,再通过本地IDC存储灾备拷贝至云上存储。
用户本地的生产数据库与云上存储之间通过阿里云DBS,将生产数据库中的数据直接热备份至云上两个区域的存储中。
数据恢复:
如果用户本地IDC的生产数据库发生故障,但本地IDC的存储运行正常,可通过本地IDC的 存储将数据恢复至本地IDC的恢复库。
如果用户本地IDC的生产数据库和存储均发生故障,或没有部署本地存储,则可通过DBS将云上存储将数据恢复至本地恢复库。
架构特点:
优点:技术要求高、一致性好,恢复时间短。
缺点:RTO随着数据库是来大小而变化。
应用场景:比较成熟的备份手段,适用于大部分的关系型数据库。
除了为数据库提供连续数据保护、低成本的备份服务外,DBS还可在多种环境下提供强有力的数据保护,包括公共云、企业自建数据中心及其他云厂商。DBS具备低成本、高性能、零风险等优势,为用户提供理想的云数据库备份解决方案。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。