闪存芯片的成本要比选转型硬盘高出8倍之多,SSD的价格还没有低到完全取代磁盘。
闪存存储没TB的成本多年来一直下滑,因为通过制造更小的单元使得芯片容量日益增加,因为通过制造更小的单元,然后使用3D NAND对单元进行分层。这意味着你可以从一个NAND晶圆中制造出更多芯片,而且成本更低。
闪存的访问速度远远高于磁盘,但是成本较高,因此对性能敏感的使用场景已经从使用磁盘转向了使用闪存,即使有额外成本是合理的。
所以,我们看到了1.5万转磁盘驱动器正在被SSD取代,并且面临着潜在的、可能的消亡,不仅如此,1万转磁盘驱动器也面临着SSD的侵蚀。
那容量更高的近线驱动器呢?
SSD容量的增长速度要比磁盘快得多,现在市场上已经有了容量超过15TB的SSD——例如100TB的Viking SSD——相比之下,磁盘驱动器的最大容量仅为14TB。
QLC(4位/单元)闪存带来了容量的又一次飞跃,每个单元的容量比当前的TLC(3位/单元)高出1/3。
加之闪存比磁盘快得多,所以这些促使着快速访问的近线驱动器使用场景也转向使用闪存。
希捷的驱动路线图显示,磁盘驱动器也变得越来越便宜,几年的时间容量已经增加到超过40TB。
随着闪存制造能力的提高, SSD会彻底取代HDD吗?SSD容量成本的下降是否会击败磁盘起容量成本的下降以实现两者的交叉?
Gartner研究表明没有。
下面的图表显示了从2014年到2021年Gartner对SSD和HDD成本趋势预测:
我们在Infinidat简报会上看到了该图表。图表显示,SSD平均价格从2014年的大约0.84美元/GB下降到2021年预期的0.10美元/GB。磁盘驱动器价格下降的速度看起来像比较缓慢,从2014年的0.085美元/GB降至2021年预期的0.001美元/GB。两条线会走到一起吗?
绿线显示,SSD和HDD的每GB价格之间的百分比差距(右侧轴)。略高于90%,这意味着2014年的差距为9倍,到2021年将达到85%左右。
这表明,SSD和HDD价格侵蚀曲线正在平行移动,而不是汇合到一起。
只要磁盘驱动器制造商能够保持容量足够快地增长,那么他们就会比SSD更具容量成本优势。我们可以简单地模拟这种持续的分离。
下面的图表显示,SSD和HDD价格每年降低30%,从1000美元的SSD和100美元的磁盘开始:
不同时间段的差距列是稳定的。如果我们将纵轴改为对数刻度,那么这些稳态平行侵蚀曲线就会变得更加明显:
Infinidat的视角
为什么提到Infinidat?因为Infinidat不制造全闪存阵列。所有主要的磁盘驱动器阵列供应商都在转向全闪存阵列(AFA),而Infinidat坚持使用二级闪存缓存的磁盘阵列,并依靠主DRAM缓存来实现性能。Infinidat称其DRAM缓存的读命中率达到90%以上。
所以全闪存阵列人士会说,闪存性能胜过磁盘。但Infinidat表示,DRAM缓存增强的磁盘性能会更好,并且比全闪存阵列便宜。
好的,如果它的DRAM缓存技术这么好,为什么全闪存阵列厂商不使用它的技术?
Infinidat的性价比优势在大容量阵列例如1PB甚至更高的阵列中能够体现出来,而这是全闪存阵列厂商通常会忽略的一点。Infinidat说它在这个领域具有持久的优势。这取决于戴尔EMC(VMAX)、IBM(DS8000)和日立Vantara(USP)的高端阵列还没有开发他们自己的DRAM缓存技术。
如果Infinidat在销售方面遇到任何阻碍的话,他们或许就会看看其他提升性能的手段,例如存储级内存和NVMe over Fabrics。这个领域会变得非常有趣!
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。