闪存芯片的成本要比选转型硬盘高出8倍之多,SSD的价格还没有低到完全取代磁盘。
闪存存储没TB的成本多年来一直下滑,因为通过制造更小的单元使得芯片容量日益增加,因为通过制造更小的单元,然后使用3D NAND对单元进行分层。这意味着你可以从一个NAND晶圆中制造出更多芯片,而且成本更低。
闪存的访问速度远远高于磁盘,但是成本较高,因此对性能敏感的使用场景已经从使用磁盘转向了使用闪存,即使有额外成本是合理的。
所以,我们看到了1.5万转磁盘驱动器正在被SSD取代,并且面临着潜在的、可能的消亡,不仅如此,1万转磁盘驱动器也面临着SSD的侵蚀。
那容量更高的近线驱动器呢?
SSD容量的增长速度要比磁盘快得多,现在市场上已经有了容量超过15TB的SSD——例如100TB的Viking SSD——相比之下,磁盘驱动器的最大容量仅为14TB。
QLC(4位/单元)闪存带来了容量的又一次飞跃,每个单元的容量比当前的TLC(3位/单元)高出1/3。
加之闪存比磁盘快得多,所以这些促使着快速访问的近线驱动器使用场景也转向使用闪存。
希捷的驱动路线图显示,磁盘驱动器也变得越来越便宜,几年的时间容量已经增加到超过40TB。
随着闪存制造能力的提高, SSD会彻底取代HDD吗?SSD容量成本的下降是否会击败磁盘起容量成本的下降以实现两者的交叉?
Gartner研究表明没有。
下面的图表显示了从2014年到2021年Gartner对SSD和HDD成本趋势预测:
我们在Infinidat简报会上看到了该图表。图表显示,SSD平均价格从2014年的大约0.84美元/GB下降到2021年预期的0.10美元/GB。磁盘驱动器价格下降的速度看起来像比较缓慢,从2014年的0.085美元/GB降至2021年预期的0.001美元/GB。两条线会走到一起吗?
绿线显示,SSD和HDD的每GB价格之间的百分比差距(右侧轴)。略高于90%,这意味着2014年的差距为9倍,到2021年将达到85%左右。
这表明,SSD和HDD价格侵蚀曲线正在平行移动,而不是汇合到一起。
只要磁盘驱动器制造商能够保持容量足够快地增长,那么他们就会比SSD更具容量成本优势。我们可以简单地模拟这种持续的分离。
下面的图表显示,SSD和HDD价格每年降低30%,从1000美元的SSD和100美元的磁盘开始:
不同时间段的差距列是稳定的。如果我们将纵轴改为对数刻度,那么这些稳态平行侵蚀曲线就会变得更加明显:
Infinidat的视角
为什么提到Infinidat?因为Infinidat不制造全闪存阵列。所有主要的磁盘驱动器阵列供应商都在转向全闪存阵列(AFA),而Infinidat坚持使用二级闪存缓存的磁盘阵列,并依靠主DRAM缓存来实现性能。Infinidat称其DRAM缓存的读命中率达到90%以上。
所以全闪存阵列人士会说,闪存性能胜过磁盘。但Infinidat表示,DRAM缓存增强的磁盘性能会更好,并且比全闪存阵列便宜。
好的,如果它的DRAM缓存技术这么好,为什么全闪存阵列厂商不使用它的技术?
Infinidat的性价比优势在大容量阵列例如1PB甚至更高的阵列中能够体现出来,而这是全闪存阵列厂商通常会忽略的一点。Infinidat说它在这个领域具有持久的优势。这取决于戴尔EMC(VMAX)、IBM(DS8000)和日立Vantara(USP)的高端阵列还没有开发他们自己的DRAM缓存技术。
如果Infinidat在销售方面遇到任何阻碍的话,他们或许就会看看其他提升性能的手段,例如存储级内存和NVMe over Fabrics。这个领域会变得非常有趣!
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。