分析公司Splunk正在使机器学习成为其下一代企业解决方案的核心,并称速度将比以前快20倍。
Splunk的平台会处理大企业生成的机器到机器的数据,帮助这些企业找到薄弱点并提升运营表现。
Splunk有大约14000家客户,其中包括医疗服务提供商、金融服务公司例如Nasdaq和Black Rock,以及像John Lewis这样的零售商。
为了争取更多的业务,今天Splunk在华盛顿年度会议上发布了最新一代企业解决方案,其中增加了更多算法。
Splunk公司IT市场布道师Guillaume Aymé表示:“现在我们会把这机器学习原生地内嵌到我们做的一切中。机器学习将帮助可以更好地做出决策。”
总的目标是从企业设备生成的数据中提供更多洞察,帮助这些企业提高性能,此外Splunk还希望通过在自身产品中原生地内嵌机器学习,这将吸引到那些通常不会想到使用机器学习的那些小型企业。
Aymé表示:“我们正在努力为企业组织降低使用机器学习的门槛,不需要聘请专门的数据科学家。他们只是希望机器学习能够带来成效,而不需要知道底层是如何运作的。”
机器学习将被融入Splunk最新版本的产品中,这些解决方案将专注于解决欺诈和云监控等痛点。
例如,User Behaviour Analytics通过搜索异常情况帮助检测内部交易和潜在安全漏洞,例如有人在不应该登录的时候进行登录。
与此同时,IT Service Intelligence产品则采用机器学习来区分“常态的”异常——例如银行预计在月底可能出现使用高峰——以及需要改善性能的情况。
对Splunk Enterprise 7.0来说另一个重大变化就是改进了的指标,这使得客户可以更好地分析各种数值例如温度等。Splunk表示,这一变化将加速监控,“至少”发出警报达20次。
“想到物联网设备,通常是笨笨的,只是发送出各种数字。我们让客户可以更加轻松地对这种数据进行分析,”Aymé表示。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。