分析公司Splunk正在使机器学习成为其下一代企业解决方案的核心,并称速度将比以前快20倍。
Splunk的平台会处理大企业生成的机器到机器的数据,帮助这些企业找到薄弱点并提升运营表现。
Splunk有大约14000家客户,其中包括医疗服务提供商、金融服务公司例如Nasdaq和Black Rock,以及像John Lewis这样的零售商。
为了争取更多的业务,今天Splunk在华盛顿年度会议上发布了最新一代企业解决方案,其中增加了更多算法。
Splunk公司IT市场布道师Guillaume Aymé表示:“现在我们会把这机器学习原生地内嵌到我们做的一切中。机器学习将帮助可以更好地做出决策。”
总的目标是从企业设备生成的数据中提供更多洞察,帮助这些企业提高性能,此外Splunk还希望通过在自身产品中原生地内嵌机器学习,这将吸引到那些通常不会想到使用机器学习的那些小型企业。
Aymé表示:“我们正在努力为企业组织降低使用机器学习的门槛,不需要聘请专门的数据科学家。他们只是希望机器学习能够带来成效,而不需要知道底层是如何运作的。”
机器学习将被融入Splunk最新版本的产品中,这些解决方案将专注于解决欺诈和云监控等痛点。
例如,User Behaviour Analytics通过搜索异常情况帮助检测内部交易和潜在安全漏洞,例如有人在不应该登录的时候进行登录。
与此同时,IT Service Intelligence产品则采用机器学习来区分“常态的”异常——例如银行预计在月底可能出现使用高峰——以及需要改善性能的情况。
对Splunk Enterprise 7.0来说另一个重大变化就是改进了的指标,这使得客户可以更好地分析各种数值例如温度等。Splunk表示,这一变化将加速监控,“至少”发出警报达20次。
“想到物联网设备,通常是笨笨的,只是发送出各种数字。我们让客户可以更加轻松地对这种数据进行分析,”Aymé表示。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。