尽管在2018财年第二季度表现出色,但是传统磁盘阵列销售的疲软仍然阻碍着Dell Technologies前进的脚步。
该季度Dell Technologies的收入为193亿美元,去年同期为130亿美元,同比增长48.5%,当然当时的财报中是不包括EMC的。GAAP净亏损为9.78亿美元,高于去年同期的2.62亿美元。
在季度末,Dell Technologies的现金和投资额为153亿美元,该季度已经支付了10亿美元的核心债务,自从收购EMC以来已经偿还了95亿美元的核心债务,剩下的核心债务为405亿美元。
Dell Technologies公司首席技术官Tom Sweet表示:“今天我们庆祝Dell与EMC历史性组合的一年……在第二季度,我们产生了强劲的现金流,并在去杠杆方面取得了进展。我们对客户、服务器、超融合和全闪存的增长速度感到高兴。”
细分结果如下:
- 客户解决方案(CSG):收入为99亿美元,同比增长7%,是两年来的最高
- 基础设施解决方案部门(ISG):收入为74亿美元,环比增长7%
- 服务器和网络收入为37亿美元,同比和环比增长16%
- 存储收入为37亿美元,环比增长0.4%,同比也有所下滑,如果以Dell和EMC产品重叠组合的综合存储收入来计算的话可能是15%。VMware收入为19亿美元
CSG表现出色,亮点包含:
- PC出货量增长3.7%,PC出货量连续第18个季度同比增长,也是自2006年以来最高的市场份额
- 笔记本表现突出,所有高端商用笔记本和消费级产品线都有双位数增长
- 是全球排名第一的工作站厂商
- 连续第16个季度是全球排名第一的显示器提供商,收入实现双位数增长
ISG服务器和网络表现还可以,但是存储方面有所下滑。尽管Dell宣称在全闪存阵列和超融合基础设施产品方面占据领先地位,但是这些收入并不足以抵消传统混合阵列的疲软。
Dell EMC总裁David Goulden表示,Dell EMC将“在商用进入市场部门、全球存储专业团队以及我们的渠道团队增加数百名存储专家,以提升我们存储产品进入市场的能力。我们预计这些变动将会在未来几个季度带来效果。”
Dell EMC的高管也对Virtustream公有云感到满意。公司首席财务官Sweet表示,自己“对我们目前在VMware与Dell销售的产品组合交叉销售所取得的成绩感到满意,因为我们利用这个业务家族扩大了我们的客户群”。
William Blair分析师Jadon Ader表示:“Dell在存储方面的表现较为薄弱……这主要是因为传统混合存储阵列表现疲软……我们猜测原因是来自更多现代化解决方案(来自自身产品组合以及来自竞争对手)的竞争、Dell与EMC之间大量产品重叠、以及兼并整合引起的销售执行问题。”
“与传统存储产品形成鲜明对比,市场对Dell EMC的下一代解决方案(例如全闪存阵列、超融合系统)有强劲的需求。总体来看,我们预计Dell EMC整体存储 业务的同比下滑幅度在百分之十几(计算上同期EMC的结果)”。
Ader认为:“对我们而言,Dell EMC存储业务的产品和执行挑战对NetApp和Pure Storage等竞争对手是有利的,并且短期内仍然存在。尽管如此,我们仍然意识到未来Dell EMC弹性捆绑和定价机制的潜力,重新获得失去的市场份额,特别是随着收入尘埃落定。”
“具体来说,我们将密切关注新的存储产品(特别是在全闪存阵列领域),并且加强销售和渠道执行(特别是在商业领域)。”
好文章,需要你的鼓励
OpenAI推出ChatGPT Images新版本GPT Image 1.5,承诺更好的指令遵循、更精确的编辑功能和高达4倍的图像生成速度。该模型面向所有ChatGPT用户和API开放。这是OpenAI在CEO奥特曼宣布"红色警报"后与谷歌Gemini竞争的最新升级。新模型提供后期制作功能,支持更精细的编辑控制,能在编辑过程中保持面部相似度、光照、构图和色调的视觉一致性,解决了传统AI图像工具迭代编辑时缺乏一致性的问题。
艾伦人工智能研究所开发的olmOCR 2通过创新的单元测试训练方法,将文档识别准确率提升至82.4%,在处理复杂数学公式、表格和多栏布局方面表现卓越。该系统采用强化学习和合成数据生成技术,实现了完全开源,为全球研究者提供了先进的OCR解决方案,推动了AI技术民主化发展。
Zoom推出AI Companion 3.0,采用联邦AI架构结合自研模型与OpenAI、Anthropic等第三方大语言模型。新版本具备智能工作流、对话式工作界面等功能,可将会议对话转化为洞察、进度跟踪和文档内容。系统支持加密传输,不使用客户内容训练模型。用户可通过ai.zoom.us访问,或以每月10美元独立购买。
苹果公司发布了包含40万张图片修改案例的AI训练数据集Pico-Banana-400K,涵盖35种修图操作类型。该数据集采用严格质量控制,包含成功失败案例对比和多轮修图场景。研究显示AI在全局修改方面表现优秀,但精细操作仍有挑战。这为AI修图技术发展奠定基础,未来将让修图软件更智能易用。