除了上市之外,接受收购对于存储阵列企业而言也不失为一种选择。
好了好了,我们买Tegile,行不行?
在投入14亿美元以收购西数-东芝闪存代工合资企业中的东芝股份之后,西部数据方面又将收购的“魔爪”伸向Tegile存储阵列公司。同样值得一提的是,西数公司还于昨天以1亿美元的惊人价码将消费级云存储企业Upthere收入囊中。
Tegile公司一直在以IntelliFlash为品牌出售混合闪存/磁盘以及全闪存阵列产品,而不久之前该产品线刚刚迎来NVMe驱动器技术的加入。
这家年轻的公司诞生于2010年,总融资金额为1.78亿美元——其中部分来自西部数据方面。双方已经就西数收购Tegile签订了最终协议,按照五倍投资回报率来计算,则西部数据需要为其掏出高达8.9亿美元的真金白银。将Upthere与Tegile合并计算,西数此轮收购活动的总金额很可能超过10亿美元。
西部数据公司将通过此次收购获得Tegile旗下的产品线与员工,外加超过1700家新客户。收购完成后,Tegile将被并入西部数据的数据中心系统(简称DCS)业务部门,由高级副总裁兼总经理Phil Bullinger负责管理——在此之前,其曾经负责过ActiveScale以及Active Archive阵列等大数据级对象存储产品的销售工作。
西部数据为什么要拿下这家存储阵列厂商?
西部数据公司总裁兼COO Mike Cordano在一份声明当中解释称,“对Tegile的收购完全符合西部数据公司的长期发展战略,即提供高价值解决方案以满足客户快速变化的存储需求。Tegile公司的技术成果与人才团队将显著推动我们达成目标的速度,具体包括帮助客户解决其在获取、保存、转换以及访问数据方面所面临的各类重大挑战。”
Bullinger同时补充称,“通过将Tegile的创新型存储系统与西部数据的全球业务以及组件与系统方案相结合,我们预计数据中心系统部门将能够在闪存阵列市场之上占据可观份额。西部数据公司专注于系统业务,而此次收购将成为推动我们长远战略的重要一步。”
Tegile公司CEO Rohit Kshetrapal则指出,“西部数据公司已经成为Tegile的一位关键性合作伙伴兼长期投资方,同时在工程技术整合、HDD/SSD供应链效率、市场化举措以及客户支持等方面为Tegile提供有力协助。”
简而言之,西部数据认为此次收购能够加速其数据中心系统业务部门的营收增长——这主要是考虑到Tegile掌握的高价值、高增长闪存阵列能够补充现有数据中心系统产品,同时为西部数据的全球客户提供更多解决方案选项。
竞争关系
全部现有内部存储阵列系统(硬件与软件)供应商皆将面对来自西部数据加Tegile的竞争挑战,具体包括:
算上西部数据-Tegile,目前市场上已经存在十家主流一级数据存储阵列供应商,七家NVMe架构级阵列供应商以及至少五家其它供应商。
而内部存储阵列市场还面临着其它威胁势力,其一为超融合型系统,其二为公有云存储方案。另外,总计22家厂商对于内部阵列市场来说,无疑显得太过拥挤。
在我们看来,未来这一领域将掀起一股合并风潮,其中较弱的厂商将遭到吞并,而更为强大的厂商则能够借此强化自身产品线。我们认为IBM与HDS有可能通过这种方式提升自家产品线,而Infinidat、Kaminario以及Tintri都将成为其潜在收购目标。
西部数据-Tegile收购案计划于2017年9月4日当周完成,但实际时间应视具体情况而定。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。