任何人都知道,物联网并不是一个玩笑,而且它确实是云的一个组成部分。对于物联网来说有一个关键的问题,就是如何从大量的设备中获取数据。思科系统预测,到2020年,云流量可能会增加近四倍,从2015年开始平均每年全年增加3.9 ZB,到2020年,平均每年增加量将会达到14.1 ZB。
因此,我们可以从物联网的发展中获得云计算的“完美风暴”。毕竟,物联网是在处理设备生成的有意义的数据,而云计算则通过集中计算和存储来使用这些数据。这两者的增长都会变得难以控制。

那么我们该怎么做呢?答案就是“边缘计算”。我们已经知道,处于边缘的计算就是将大部分数据处理推向网络的边缘,接近数据的来源。接下来的问题是区分边缘和集中式系统之间的处理,也就是像AWS、谷歌云或微软Azure这样的公共云。
这听起来像是一个客户端/服务器架构,也涉及去搞清楚在客户端上做什么以及在服务器上做什么。对于物联网和任何高分布式的应用来说,你基本上已经得到了一个“客户端-网络边缘-服务器”架构,或者——如果你的设备无法进行任何数据处理的话,就会是“网络边缘-服务器”架构。
其目标是在设备周围快速处理数据,也就是立即采取行动。有数百个用例表明,反应时间是物联网系统的关键价值,而持续地将数据发送到集中式的云上,毫无疑问会阻碍这种价值的实现。
不过,我们仍然可以使用云来处理那些既不具有时间敏感性,也不是设备需求的事务,比如对来自所有设备的数据进行大数据分析。
另一方面,边缘计算和云计算是两种截然不同的东西,谁也不会取代谁。但是有太多的文章让IT专家们感到困惑,他们认为边缘计算将取代云计算。然而,这种说法的荒谬之处与“PC将取代数据中心”没两样。
创建基于特定目的的边缘计算应用程序是完全有意义的,例如将数据处理放置在传感器中以快速处理警报反应的APP。但是,库存控制数据和应用程序是不能放在边缘的,将所有计算转移到边缘会引发一个分布的、无担保的、无法处理的混乱情况。
所有公有云供应商都拥有物联网战略和技术堆栈,其中包括或者将会包括边缘计算。边缘计算和云计算可以很好地结合在一起,但是边缘计算是专门为有特殊需要的特殊系统设计的。云计算则是一个更加通用的平台,它也可以在传统的“客户端-服务器”模型中使用专用的系统。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。