任何人都知道,物联网并不是一个玩笑,而且它确实是云的一个组成部分。对于物联网来说有一个关键的问题,就是如何从大量的设备中获取数据。思科系统预测,到2020年,云流量可能会增加近四倍,从2015年开始平均每年全年增加3.9 ZB,到2020年,平均每年增加量将会达到14.1 ZB。
因此,我们可以从物联网的发展中获得云计算的“完美风暴”。毕竟,物联网是在处理设备生成的有意义的数据,而云计算则通过集中计算和存储来使用这些数据。这两者的增长都会变得难以控制。
那么我们该怎么做呢?答案就是“边缘计算”。我们已经知道,处于边缘的计算就是将大部分数据处理推向网络的边缘,接近数据的来源。接下来的问题是区分边缘和集中式系统之间的处理,也就是像AWS、谷歌云或微软Azure这样的公共云。
这听起来像是一个客户端/服务器架构,也涉及去搞清楚在客户端上做什么以及在服务器上做什么。对于物联网和任何高分布式的应用来说,你基本上已经得到了一个“客户端-网络边缘-服务器”架构,或者——如果你的设备无法进行任何数据处理的话,就会是“网络边缘-服务器”架构。
其目标是在设备周围快速处理数据,也就是立即采取行动。有数百个用例表明,反应时间是物联网系统的关键价值,而持续地将数据发送到集中式的云上,毫无疑问会阻碍这种价值的实现。
不过,我们仍然可以使用云来处理那些既不具有时间敏感性,也不是设备需求的事务,比如对来自所有设备的数据进行大数据分析。
另一方面,边缘计算和云计算是两种截然不同的东西,谁也不会取代谁。但是有太多的文章让IT专家们感到困惑,他们认为边缘计算将取代云计算。然而,这种说法的荒谬之处与“PC将取代数据中心”没两样。
创建基于特定目的的边缘计算应用程序是完全有意义的,例如将数据处理放置在传感器中以快速处理警报反应的APP。但是,库存控制数据和应用程序是不能放在边缘的,将所有计算转移到边缘会引发一个分布的、无担保的、无法处理的混乱情况。
所有公有云供应商都拥有物联网战略和技术堆栈,其中包括或者将会包括边缘计算。边缘计算和云计算可以很好地结合在一起,但是边缘计算是专门为有特殊需要的特殊系统设计的。云计算则是一个更加通用的平台,它也可以在传统的“客户端-服务器”模型中使用专用的系统。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。