任何人都知道,物联网并不是一个玩笑,而且它确实是云的一个组成部分。对于物联网来说有一个关键的问题,就是如何从大量的设备中获取数据。思科系统预测,到2020年,云流量可能会增加近四倍,从2015年开始平均每年全年增加3.9 ZB,到2020年,平均每年增加量将会达到14.1 ZB。
因此,我们可以从物联网的发展中获得云计算的“完美风暴”。毕竟,物联网是在处理设备生成的有意义的数据,而云计算则通过集中计算和存储来使用这些数据。这两者的增长都会变得难以控制。

那么我们该怎么做呢?答案就是“边缘计算”。我们已经知道,处于边缘的计算就是将大部分数据处理推向网络的边缘,接近数据的来源。接下来的问题是区分边缘和集中式系统之间的处理,也就是像AWS、谷歌云或微软Azure这样的公共云。
这听起来像是一个客户端/服务器架构,也涉及去搞清楚在客户端上做什么以及在服务器上做什么。对于物联网和任何高分布式的应用来说,你基本上已经得到了一个“客户端-网络边缘-服务器”架构,或者——如果你的设备无法进行任何数据处理的话,就会是“网络边缘-服务器”架构。
其目标是在设备周围快速处理数据,也就是立即采取行动。有数百个用例表明,反应时间是物联网系统的关键价值,而持续地将数据发送到集中式的云上,毫无疑问会阻碍这种价值的实现。
不过,我们仍然可以使用云来处理那些既不具有时间敏感性,也不是设备需求的事务,比如对来自所有设备的数据进行大数据分析。
另一方面,边缘计算和云计算是两种截然不同的东西,谁也不会取代谁。但是有太多的文章让IT专家们感到困惑,他们认为边缘计算将取代云计算。然而,这种说法的荒谬之处与“PC将取代数据中心”没两样。
创建基于特定目的的边缘计算应用程序是完全有意义的,例如将数据处理放置在传感器中以快速处理警报反应的APP。但是,库存控制数据和应用程序是不能放在边缘的,将所有计算转移到边缘会引发一个分布的、无担保的、无法处理的混乱情况。
所有公有云供应商都拥有物联网战略和技术堆栈,其中包括或者将会包括边缘计算。边缘计算和云计算可以很好地结合在一起,但是边缘计算是专门为有特殊需要的特殊系统设计的。云计算则是一个更加通用的平台,它也可以在传统的“客户端-服务器”模型中使用专用的系统。
好文章,需要你的鼓励
亚马逊在CES期间宣布推出Alexa.com网站,用户可像使用其他AI聊天机器人一样与Alexa交互。经过数月早期体验,Alexa+已获得数千万用户。新网站支持语音和文本交互,需登录使用以确保跨设备功能连续性。76%的Alexa+交互为独特任务,包括智能家居控制和第三方集成。Alexa+兼容七年来的设备,正式版将收费每月20美元或包含在Prime会员中。
SimWorld是由UCSD等多所顶尖院校联合开发的革命性AI仿真平台,基于虚幻引擎5构建了具备真实物理规律的虚拟城市环境。该平台支持无限扩展的程序化世界生成和自然语言交互,让AI智能体能够在复杂环境中学会生存、合作和竞争,为通用人工智能的发展提供了前所未有的训练平台。
AI笔记公司Plaud在CES 2026推出新款可穿戴设备NotePin S,可夹在衣领、戴在手腕或挂在脖子上记录对话。该设备通过蓝牙连接手机,配备双麦克风,录制范围约3米,支持一键高亮标记重要时刻。同时发布的还有Plaud Desktop桌面AI记录工具,可原生捕获线上会议内容,无需机器人加入通话。两款产品将所有笔记、会议和对话整合到统一平台管理。
浙江大学联合华为提出C2DLM,这是一种因果概念引导的扩散语言模型,通过自动提取因果关系并融入注意力机制来增强AI推理能力。相比传统方法,C2DLM在推理任务上平均提升1.31%-12%,训练效率提高3.2倍,为解决语言模型推理能力不足开辟了新路径。