通常娱乐和媒体市场不被看作是高性能计算市场的一部分,具有相关大规模的并行文件访问和数据集管理。在HPC领域,现在可以经常看到像Lustre和GPFS(重新命名为Spectrum Scale)这样的文件访问软件。
HPC是一个学术和超级计算专业领域,但是已经扩展到商用领域,因为石油和天然气及生命科学领域的业务开始转向HPC来处理不断增长的数据量。我们看到有大量工作人员并行地运行新数据,老数据归档到后端存储库,设置工作流结构来管理这些数据和流程。
娱乐和媒体领域也在朝着相同的方向发展。电影分辨率日渐提高以实现具有特效的现实,数字艺术家们为虚拟演员创造了生动且多层次的背景。这正是昆腾(Quantum)横向扩展的StorNext文件访问管理和虚拟化产品的核心。
StorNext通过数据捕获提供主文件数据存储和访问,旧文件保存在近线(对象存储)磁盘或者磁带或者公有云上,根据需要由工作流程在这些存储层之间迁移文件,通过用不那么昂贵的存储层来保存那些不需要立即访问的数据,降低数据和存储库的成本。
昆腾表示,StorNext已经扩展运用到视频监控、车联网(例如自动驾驶汽车)、生命科学以及其他HPC可以发挥作用的垂直市场。
StorNext并不参与传统HPC市场的竞争,也就是中小型集群的HPC。但是据昆腾营销副总裁Molly Rector称,StorNext在商用HPC领域的确与Spectrum Scale和Lustre相竞争。
当数据增长超过1PB的时候,NAS系统可能就遇到问题了。这时候横向扩展的StorNext、Lustre和Spectrum Scale包含NAS会在数据密集型环境中蔓延。
Rector在去年9月加入昆腾,当时昆腾一直在发展StorNext业务,因为昆腾的DXi数据保护产品增长乏力,磁带产品持续疲软。
为了让StorNext继续增长,就必须让StorNext从娱乐和媒体这个核心市场扩展到更广泛的企业用途中。所以昆腾将其定位为一款客户用来拯救NAS蔓延的产品,而不是作为Spectrum Scale和Lustre的替代选择。昆腾已经聘请了HPC方面的专家,例如来自Adaptive的销售专家Jason Coari。
StorNext所在的领域就像是一个复杂的制造流程:通过仔细定义和管理的数据制造,处理数字组件的分层工作流,两者结合完成一款数字产品、一部电影或者视频,一个油田模型,或者基因组分析。在这周制造流程背后的基础设施设计和操作十分关键。昆腾希望StorNext在娱乐和媒体领域的经验能够让它在以数据为推动的数据产品制造市场取得进展。
战争已经打响,横向扩展的并行文件访问提供商目标是占领传统文件系统止步不前甚至落后下来的领域。客户将根据性能、采购成本和运营成本,以及工作流灵活性和成熟度来购买系统。
像DDN、Dell(全闪存的Ision)这样的提供商,以及XtremIO、Avere和Qumulo等,将矛头直接对准了Spectrum Scale和Lustre提供商。昆腾现在也加入其中,作为一家横向扩展、数字化数据产品制造工作流提供商。
好文章,需要你的鼓励
微软将在今年夏季晚些时候推出Windows恢复力计划,著名的Windows蓝屏死机将被新的黑屏替代。这一变化是微软对2024年7月CrowdStrike故障事件的回应,该事件导致约850万台Windows设备瘫痪。作为Windows恢复力计划的一部分,微软正在重新设计Windows代码,让安全软件在内核外运行,以提高系统稳定性和恢复能力,减少因第三方安全软件问题导致的系统崩溃。
香港理工大学研究团队开发了突破性医学AI系统GEMeX-ThinkVG,让人工智能在分析胸片时能像医生一样详细解释诊断过程。该系统不仅能准确回答医学问题,还能标注具体的影像区域并提供完整的推理链条,解决了传统医学AI"黑盒子"问题。通过创新的强化学习训练方法,仅用八分之一数据就达到了传统方法的性能水平,为可解释医学AI开辟了新方向。
随着GPU成为AI工作负载训练和运营的关键,越来越多的云服务提供商开始提供云GPU实例。这为希望避免部署GPU硬件费用和复杂性的组织带来好消息。云GPU实例可按超大规模与专业化提供商、通用与专用实例、共享与独占服务器进行分类。选择时需考虑工作负载类型、GPU类型、成本、延迟和控制级别等因素。
希腊雅典理工大学团队开发CultureMERT-95M多文化音乐AI模型,通过两阶段持续预训练和任务算术方法,让AI系统学会理解希腊、土耳其、印度等非西方音乐传统。该模型在非西方音乐分类任务上提升4.9%准确率,同时保持西方音乐理解能力,为构建更包容的全球音乐AI系统奠定基础。