在2017年,云计算的投资将持续火爆,但是随着企业需求变化, 2017年云市场或许将出现如下五大趋势。
多重云将成为新常态
随着许多公司投资公有云和私有云服务,2017年将会有更多的企业同时向多个云提供商承诺。例如,将有越来越少的企业将亚马逊网络服务作为唯一业务,而是使用双源公有云服务来避免供应商锁定。这样的好处是使数据服务更加高效。没有这个功能,企业部署将会像使用磁带时一样低效。
内存和临时存储变得更加重要
增强和虚拟现实,人工智能和机器学习已经变得越来越流行。分析这些新的数据源对长期业务目标至关重要,但当分析结果比数据本身更重要时,长期存储数据是不切实际和不必要的。 虽然2017年会看到大量的数据增长,需要永久存储,但是大多数网络新产生的数据是短暂的,将很快超过它的实用性和被丢弃。因此,尽管数据量呈指数增长,但存储空间的增长将不会像我们预期的那么多。
更多内容交付网络
内容交付网络是导致无法访问和低性能的主要原因。替代品已经成为昂贵复杂的供应商解决方案之一。期望更多的公司使用公有云和软件定义的基础设施来构建和运营自己的CDN。这些DIY CDN虽然不会提供全方位服务解决方案,但他们将为陈旧的传统架构提供更精简、更便宜的解决方案。
机器学习将成为企业的核心
今天的机器学习技术的独特之处在于它的大部分源自“开源”。 这意味着许多不同的产品和服务都将机器学习构建到他们的平台。因此,更多的企业将在2017年采用机器学习,有可能他们自己都不知道为什么要学习,答案是供应商正在积极使用ML来使他们的产品更智能。并且现有的产品也将很快使用多种机器学习,通过更新来作为额外交付。
越来越多的公司将元数据作为新的收入来源
像Google或Facebook中使用的那些系统,都是为了收集和存储大量的元数据而设计的。 随着公司分析数据的能力越来越强,数据变现将变得越来越重要。像Netflix已经成功地分析出客户数据的共性。有意义的元数据,特别是已经存储了很长时间的元数据,也可以成为分析厂商销售的新产品的焦点。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
MWS AI联合ITMO大学提出CoSpaDi技术,通过稀疏字典学习实现大型语言模型高效压缩。该方法突破传统低秩分解限制,为不同知识类型提供定制化存储方案,在20%-50%压缩比例下显著优于现有方法。支持跨层字典共享和数据感知优化,兼容量化技术,为移动设备和边缘计算部署大模型提供实用解决方案。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
莫斯科大学团队开发的TUN3D系统实现了重大技术突破,首次让普通相机拍摄的照片就能准确识别房间结构和物体位置。该系统无需专业3D扫描设备或精确位置信息,仅用手机拍摄的多角度照片即可重建完整3D场景模型。在多个标准数据集测试中均达到最佳性能,为房地产、室内设计、电商等领域带来革命性应用前景。