在2017年,云计算的投资将持续火爆,但是随着企业需求变化, 2017年云市场或许将出现如下五大趋势。
多重云将成为新常态
随着许多公司投资公有云和私有云服务,2017年将会有更多的企业同时向多个云提供商承诺。例如,将有越来越少的企业将亚马逊网络服务作为唯一业务,而是使用双源公有云服务来避免供应商锁定。这样的好处是使数据服务更加高效。没有这个功能,企业部署将会像使用磁带时一样低效。
内存和临时存储变得更加重要
增强和虚拟现实,人工智能和机器学习已经变得越来越流行。分析这些新的数据源对长期业务目标至关重要,但当分析结果比数据本身更重要时,长期存储数据是不切实际和不必要的。 虽然2017年会看到大量的数据增长,需要永久存储,但是大多数网络新产生的数据是短暂的,将很快超过它的实用性和被丢弃。因此,尽管数据量呈指数增长,但存储空间的增长将不会像我们预期的那么多。
更多内容交付网络
内容交付网络是导致无法访问和低性能的主要原因。替代品已经成为昂贵复杂的供应商解决方案之一。期望更多的公司使用公有云和软件定义的基础设施来构建和运营自己的CDN。这些DIY CDN虽然不会提供全方位服务解决方案,但他们将为陈旧的传统架构提供更精简、更便宜的解决方案。
机器学习将成为企业的核心
今天的机器学习技术的独特之处在于它的大部分源自“开源”。 这意味着许多不同的产品和服务都将机器学习构建到他们的平台。因此,更多的企业将在2017年采用机器学习,有可能他们自己都不知道为什么要学习,答案是供应商正在积极使用ML来使他们的产品更智能。并且现有的产品也将很快使用多种机器学习,通过更新来作为额外交付。
越来越多的公司将元数据作为新的收入来源
像Google或Facebook中使用的那些系统,都是为了收集和存储大量的元数据而设计的。 随着公司分析数据的能力越来越强,数据变现将变得越来越重要。像Netflix已经成功地分析出客户数据的共性。有意义的元数据,特别是已经存储了很长时间的元数据,也可以成为分析厂商销售的新产品的焦点。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。