当前,随着互联网+、云计算、大数据、人工智能的蓬勃发展,新IT成为加速产业升级、业务创新、推动新业务创新与实现世界经济增长的核心引擎。在新经济及技术环境下,随着新IT技术的日益普及,和企业级应用对性能的要求越来越高,传统存储的IOPS性能和低延迟已经成为企业业务发展的瓶颈,使得业务发展与创新面临严峻挑战。
我们知道,存储和计算性能的发展存在着极大的不平衡性。在"摩尔定律"之下,处理器、内存的性能发展很快,相比之下存储性能发展比较缓慢,存储性能成为IT加速的关键瓶颈。以前企业是通过增加硬盘数量来解决存储性能瓶颈,但是效果非常有限,且浪费空间和能源。目前已有客户使用SATA/SAS SSD(Solid State Drives:固态硬盘)来替代普通硬盘,业务性能虽然得到一定的提升,但是相比过剩的CPU、内存等性能资源仍远远不够。
Gartner的市场分析报告数据显示,越来越多的企业选择SSD来替代传统硬盘,预计在2017年SSD的出货量将超过传统硬盘(见图1)。

图1:服务器侧SSD与SAS HDD发货量
企业级SSD,在存储性能、降低响应延迟、高密度低能耗方面比普通硬盘有着巨大的先天优势,SSD替代普通硬盘已经成为业界共识。SSD经过SATA、SAS的多代发展,既受制于SATA、SAS协议的的固有性能限制,也受制于传统服务器PCIe槽位的可扩展性限制。基于NVMe(Non Volatile Memory express:非易失性存储标准)的SSD,成为解决服务器存储性能瓶颈的新选择。随着SSD的价格逐年降低,NVMe SSD将更快进入企业IT核心业务主存储系统中,并成为I/O性能提升、应用加速的首选,尤其是数据库OLTP/OLAP等低延迟、高并发的业务应用。NVMe SSD,是企业为IT业务加速、为应用加速,从而成为加速改变IT世界的新力量。
目前业界主要有M.2、PCIe插卡及U.2等SSD产品形态,它们都是直接与PCIe通道连接,具备高I/O性能。其中M.2形态的SSD主要是应用于个人电脑市场,PCIe插卡形态的SSD主要应用于互联网行业及企业市场,而U.2形态的SSD是2.5英寸的硬盘形态,需要服务器的硬盘背板支持。企业用户更青睐于U.2 NVMe SSD,原因在于,其进一步提升SSD性能的同时(是SATA SSD性能的10倍),其沿用的传统驱动器形状标准可与服务器、存储设备设计标准兼容,前端插拔,易于维护(PCIe插卡形态的SSD需开箱维护,停机不可避免)且更易扩展到更大存储容量,有利于保护企业用户的既有投资并延续日常使用及运维习惯。对比见下表1:

表1:SSD产品形态对比
基于如上趋势判断,以及业界大数据类业务对高I/O性能的迫切要求,华为服务器秉承一贯的"持续创新,让计算变简单"的理念,投入研发资源,不断更新服务器的硬盘背板、Riser卡、高速线缆的设计,并增加新的PCIe Switch芯片解决PCIe通道总数限制的创新性解决方案,研发出全新一代服务器架构平台。再结合多年的NVMe SSD硬盘研发经验积累(NVMe SSD硬盘业界性能第一:3.2GB/s带宽、80万IOPS),通过自研ASIC SSD控制芯片及NVMControl技术,持续完善服务器全系列对U.2 NVMe SSD硬盘的支持(见下表2),迎接服务器全闪存风暴的来临,并为企业用户带来"同等容量、性能翻倍、节能40%"的可观价值。

表2:华为支持U.2 NVMe SSD硬盘服务器机型
华为NVMe SSD服务器,可满足数据库OLTP/OLAP、内容识别(如深度学习算法训练)、热点数据存储(如高频关键词搜索、热点视频在线点播)、频繁冷热数据转换、内存数据库、媒体制作等业务场景的大数据量、高I/O并发、低延时的业务要求,也可作为云化资源池的高速存储资源。
企业新IT在选择SSD服务器时,已经不再单纯的仅从SSD的价格来衡量,而是更趋于理性,从SSD的性能、经济性、可靠性、管理性等多个角度进行综合考虑。SSD与的CPU、内存的紧密结合,不仅意味着为业务的关键性负载提供高I/O性能、以及最大限度的提高SSD的使用效率与管理效率,同时还意味着能够充分保护企业未来的IT投资,在满足数据量激增、业务量爆发的业务发展基本要求下,从更长时间周期中降低企业新IT的总TCO。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。