华为HUAWEI CONNECT 2016 全联接大会已经落幕,但是其传达的信息值得分享。其中华为SDN创新实践分享会和面向云业务的Cloud Fabric 5.0解决方案的发布值得分享大家。我们知道互联网是整个产业的先驱,在业界前列在云技术、SDN创新技术优先在互联网发生。包括大家熟悉腾讯、百度、京东等等。这些公司在运营自营业务同时获得了很强大技术能力,储备了强大的技术能力,于是各自推出基于公有云的服务。
但是当这些企业提供公有云的时候,带来的挑战是完全不同,当全球最大的一个电子商务网站,它的云业务满足全球的购物,它需求超大规模服务器集群,对时延可靠性要求非常高。但是公有云时候不同了,比如支持140万租户,比如租户有做金融和做网络游戏,他对业务开通速度要求非常高,包括每个用户要求可度量网络质量。公有云使得互联网公司发生了颠覆性的变化。如何解决公有云带来的业务需求呢?
华为企业网络产品线数据中心网络领域总经理余立和华为企业业务BG企业网络领域营销总监程剑与媒体代表做了交流。阐述了华为Cloud Fabric 5.0解决方案助力SDN创新实践。
余立在采访中说到,华为开放SDN解决方案,能够助力互联网云业务的高效运营,SDN解决方案能够实现开放控制器+开放的fabric,为互联网云业务实现快速上线、租户的精细运维、网络稳定可靠以及网络的弹性扩展。
Cloud Fabric 5.0的核心是华为Fabric Insight精细运维解决方案,该方案通过网络状态可视化度量管理和基于大数据的智能分析实现分钟级故障定位,帮助客户提升运维效率、降低运维成本。 华为数据中心网络领域总经理余立表示:“华为Fabric Insight精细运维解决方案,以面向业务的运维管理,帮助客户开启网络智能运维模式,减少业务云迁移中的阻碍,加速云转型升级。”
具体来讲华为Fabric Insight 精细运维解决方案,通过以下运维应用,帮助云数据中心有效提升运维效率。
全网可视化通过将“业务、逻辑、物理”三层网络对应的应用质量、逻辑和物理网元、功能特性使用情况等网络状态信息全面统计,对应用及网络的健康度进行全面度量和分析,使得大规模网络运维管理变得简单;
全网路径质量扫描,通过周期性自动获取网络路径质量状态,并跟随网络动态调整而变化,业务层故障时可自动关联物理设备。采用创新的大数据分析算法,100%网络路径探测同时加速探测效率,实现分钟级故障定位。
比如一些互联网企业中,瞬时搜索或者在线购物发生毫秒级别的丢包,当你在以秒级的精度检测发现流量没有丢包,对业务造成的影响无法快速定位华为Fabric Insight精细化运维能提供一个丢包的可视能力以及智能分析,通过全网数据统一分析处理,如果我们租户或者业务发生故障,我们能及时的定位到底那个物理网络的节点,甚至哪个端口,运维模式从被动运维走向主动调优。
同时华为发布一个100G弹性互联的解决方案。可以提供高于业界80倍的缓存能力,丰富了端到端大缓存高速互联解决方案的内涵,进一步提升业界领先的弹性组网能力,华为还发布了云数据中心SDN安全解决方案,将传统安全硬件转换为虚拟化安全服务,通过安全服务自动化开通与统一调度帮助数据中心租户提升云业务安全防护效率。尤其适合互联网视频搜索等大数据一些相关业务。
对于Cloud Fabric 5.0的未来发展,程剑认为华为就精细化运维方案而言,目前来在运维这块跟容器结合还在进一步的研发中,未来会推出与容器融合的软件解决方案。
好文章,需要你的鼓励
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。