大数据,说的再多其实也还是会有很多网友对当前的大数据技术存在一些疑问和误区,比如有很多朋友会觉得只有到达Peta级别以上的才能够被称之为大数据,甚至是到达了Zeta级别才算是。

其实不然,大数据的本身是数据,对于我们这些用户来说,如何从数据当中挖掘出有用的价值,这种价值可能包含了商业价值、技术开发价值等等,那么这样的大数据才是有意义的。而作为数据本身来说,从诞生那天开始其实数据量就一直在不断地攀升。
回过头来,究竟什么才是大数据,从官方的字面意义来分析,大数据其实就是一套完整的生态体系,从数据的产生、采集、加工、汇总、展现、挖掘、推送等方面形成了一个闭环的价值链,并且通过每个环节的多种技术处理后,为所在业务场景提供有价值的应用和服务。
不要为了“大数据”而“大数据”
这个误区的解读是近些年在行业内被提及的越来越多的观点,在很多企业级用户当中,追求技术的革新是再正常不过的,但是很多企业在技术创新过程当中却盲目的一味追求最新、最好、最快,而没有把问题的出发点放在企业内部的业务实际需求上面,从长远来看,这其实也并不是一个良性循环。
从技术上来说,比如BAT或者很多互联网企业去追求大数据,是因为业务发展的需要。任何一个互联网企业一出生就是为了流量和点击而活着,这就意味这大量的非结构化数据需要进行快速处理,这时候就决定了互联网企业只能通过一些并发手段去分解底层的数据。
从投资上来说,互联网企业出生都是平民,根本买不起大型设备,就算一夜暴富后,也没有一个传统的小型机大型机可以更好的满足它们的发展,故只能另辟蹊径创造价值链和标准了,在之前的低投资、轻量级架构上,不断进行小量的线性硬件投资满足业务的发展。
数据:水能载舟亦能覆舟
这个观点也是行业专家一直在强调的问题,大数据技术是为了满足用户的一些特定的业务目标来服务的,在企业用户明确了具体的业务目标范畴之后,顺势设计符合自身业务架构的技术架构,才是一种科学的健康的发展观。
随着大数据的不断创新和发展,在促进生产力快速推进的同时,也促使了一些新的技术诞生出来,比如近些年被更多提及的机器学习、深度学习等等,其实就是大数据快速发展而导致的。更有意思的是,现在在行业内还被提出了“小数据”、“微数据”的概念,这其实就是在把数据的价值往更详细的方向去演进,一切其实都是为了企业业务能够拥有一个更加良性的生长环境,而这也正是当今这个数据时代为用户所带来的最为重要的改变。
好文章,需要你的鼓励
由贝索斯共同领导的普罗米修斯项目已收购AI初创公司General Agents。该公司开发了名为Ace的AI智能体,可自主执行视频编辑、数据复制等计算机任务。General Agents基于视频语言行为架构开发模型,这与普罗米修斯项目专注制造业AI系统的目标高度契合。收购完成后,普罗米修斯团队已超过100人,预计将推进工业机器人领域的AI应用发展。
斯科尔科技学院联合俄罗斯多家研究机构开发出革命性的多语言AI虚假信息检测技术。该研究构建了覆盖14种语言的大型数据集PsiloQA,通过"诱导AI说谎"的创新方法自动生成训练样本,成本仅为传统人工标注的数十分之一。实验证明多语言训练的检测模型性能显著优于单语言模型,为全球AI可信度监督提供了实用解决方案。
Kagi公司发布Orion浏览器1.0版本,这是一款专为苹果平台设计的全新浏览器。该浏览器主打极速浏览体验和用户隐私保护,完全免费使用并附赠200次Kagi搜索。Orion还提供月费5美元的付费订阅服务,解锁更多高级功能。未来计划包括更深度的自定义选项和性能优化。
NVIDIA研究团队发现,训练机器人最有效的方法竟然是最简单的:直接用普通文字告诉机器人该做什么,而不需要复杂的编码系统。他们开发的VLA-0系统在标准测试中超越了所有复杂方法,平均成功率达94.7%,在真实机器人测试中也比预训练系统高出12.5个百分点。这项发现挑战了"越复杂越好"的传统观念,可能加速智能家用机器人的普及。